1
|
Liu Q, Liu Y, Wan Q, Lu Q, Liu J, Ren Y, Tang J, Su Q, Luo Y. Label-Free, Reusable, Equipment-Free, and Visual Detection of Hydrogen Sulfide Using a Colorimetric and Fluorescent Dual-Mode Sensing Platform. Anal Chem 2023; 95:5920-5926. [PMID: 36989391 DOI: 10.1021/acs.analchem.2c05364] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In this work, we have found for the first time that the fluorescence of rhodamine B (RhB) would be dramatically reduced after it bound to hemin/G-quadruplex and reacted with •OH. Based on this finding, we have designed a colorimetric and fluorescent dual-mode sensing platform for visual detection of hydrogen sulfide (H2S). The constructed sensor is based on the formation of dsDNA and the G-quadruplex structure by the cytosine-Ag+-cytosine mismatch, causing H2O2-mediated catalysis to oxidize ABTS or RhB to induce a colorimetric or fluorescent change. In the presence of H2S, the solution color for colorimetric and fluorescent assays would change from dark green to pink and from green (fluorescence off) to bright yellow (fluorescence on), respectively. This dual-mode assay showed high selectivity toward H2S over other interference materials with a low measurable detection limit value (below than 2.5 μM), and it has been successfully applied to H2S visual detection in real samples. Moreover, the dual-mode sensing strategy presented an excellent reutilization character both in colorimetric and fluorescent assays. This method was employed as a label-free, simple, fast, and equipment-free platform for H2S detection with high selectivity and reusability. This work realized naked-eye detection both in colorimetric and fluorescent analysis at a lower concentration of H2S, demonstrating a promising strategy for on-site visual detection of H2S.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yue Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qing Wan
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qinrui Lu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Jun Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Yonggang Ren
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Jiancai Tang
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| | - Qiang Su
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, Sichuan 637000, P. R. China
| | - Yingping Luo
- Department of Pharmacology, North Sichuan Medical College, Nanchong, Sichuan 637100, P. R. China
| |
Collapse
|
2
|
Wende C, Kulak N. Fluorophore ATCUN complexes: combining agent and probe for oxidative DNA cleavage. Chem Commun (Camb) 2016; 51:12395-8. [PMID: 26143739 DOI: 10.1039/c5cc04508h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA can be oxidatively cleaved by copper complexes of the ATCUN peptide (amino terminal Cu(II)- and Ni(II)-binding motif). In order to investigate the fate of the metal ion throughout this process, we have exploited quenching/dequenching effects of conjugated fluorophores.
Collapse
Affiliation(s)
- C Wende
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.
| | | |
Collapse
|
3
|
Si F, Zhang X, Yan K. The quantitative detection of HO˙ generated in a high temperature H2O2 bleaching system with a novel fluorescent probe benzenepentacarboxylic acid. RSC Adv 2014. [DOI: 10.1039/c3ra45975f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
4
|
Han GC, Peng Y, Hao YQ, Liu YN, Zhou F. Spectrofluorimetric determination of total free thiols based on formation of complexes of Ce(III) with disulfide bonds. Anal Chim Acta 2010; 659:238-42. [DOI: 10.1016/j.aca.2009.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 11/16/2009] [Accepted: 11/25/2009] [Indexed: 11/29/2022]
|
5
|
Wang HF, He Y, Ji TR, Yan XP. Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 2009; 81:1615-21. [PMID: 19170523 DOI: 10.1021/ac802375a] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new type of molecularly imprinted polymer (MIP)-based room-temperature phosphorescence (RTP) optosensor was developed by anchoring the MIP layer on the surface of Mn-doped ZnS quantum dots (QDs) via a surface molecular imprinting process. The synergetic combination of the RTP property of the Mn-doped ZnS QDs and the merits of the surface imprinting polymers not only improves the RTP selectivity of the Mn-doped ZnS QDs but also makes the MIP-based RTP optosensor also applicable to selective detecting of those nonphosphorescent analytes without the need for any inducers and derivatization. The new MIP-based RTP sensing protocol was applied to detect trace pentachlorophenol (PCP) in water samples without the interference of autofluorescence and scattering light of matrixes. The detection limit for PCP was 86 nM, and the precision for five replicate detections of 0.4 microM PCP was 2.8% (relative standard deviation). The recovery of spiked PCP in river water samples ranged from 93% to 106%.
Collapse
Affiliation(s)
- He-Fang Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | | | | | | |
Collapse
|
6
|
Shinagawa H, Miki Y, Yoshida K. BRCA1-mediated ubiquitination inhibits topoisomerase II alpha activity in response to oxidative stress. Antioxid Redox Signal 2008; 10:939-49. [PMID: 18162055 DOI: 10.1089/ars.2007.1851] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Topoisomerase IIalpha is known to be critically involved in both cell proliferation and cell death. The mechanisms responsible for stress-dependent topoisomerase IIalpha alterations, however, remain unclear. This study focused on the behavior of topoisomerase IIalpha in response to oxidative stress induced by hydrogen peroxide (H(2)O(2)). The catalytic activity of topoisomerase IIalpha in MOLT-4 cells treated with H(2)O(2) decreased in parallel with the alteration of topoisomerase IIalpha expression. The ubiquitination of topoisomerase IIalpha was dependent on oxidative stress. BRCA1, a tumor-suppressor gene, appeared to be involved in these alterations in topoisomerase IIalpha. Furthermore, the retinoblastoma protein (pRb) was required for the ubiquitination of topoisomerase IIalpha by BRCA1. We conclude that the functions of topoisomerase IIalpha are regulated by ubiquitination on exposure to oxidative stress.
Collapse
Affiliation(s)
- Hirokuni Shinagawa
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | |
Collapse
|