1
|
Skoczynska A, Lewinski A, Pokora M, Paneth P, Budzisz E. An Overview of the Potential Medicinal and Pharmaceutical Properties of Ru(II)/(III) Complexes. Int J Mol Sci 2023; 24:ijms24119512. [PMID: 37298471 DOI: 10.3390/ijms24119512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This review examines the existing knowledge about Ru(II)/(III) ion complexes with a potential application in medicine or pharmacy, which may offer greater potential in cancer chemotherapy than Pt(II) complexes, which are known to cause many side effects. Hence, much attention has been paid to research on cancer cell lines and clinical trials have been undertaken on ruthenium complexes. In addition to their antitumor activity, ruthenium complexes are under evaluation for other diseases, such as type 2 diabetes, Alzheimer's disease and HIV. Attempts are also being made to evaluate ruthenium complexes as potential photosensitizers with polypyridine ligands for use in cancer chemotherapy. The review also briefly examines theoretical approaches to studying the interactions of Ru(II)/Ru(III) complexes with biological receptors, which can facilitate the rational design of ruthenium-based drugs.
Collapse
Affiliation(s)
- Anna Skoczynska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Mateusz Pokora
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Paneth
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
2
|
Almutairi FM, Ajmal MR, Siddiqi MK, Majid N, Al-Alawy AIA, Abdelhameed AS, Khan RH. Biophysical insight into the interaction of levocabastine with human serum albumin: spectroscopy and molecular docking approach. J Biomol Struct Dyn 2020; 39:1525-1534. [PMID: 32308140 DOI: 10.1080/07391102.2020.1750486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interaction of levocabastine with human serum albumin (HSA) is investigated by applying fluorescence spectroscopy, circular dichroism spectroscopy and molecular docking methods. Levocabastine is an important drug in treatment of allergy and currently a target drug for drug repurposing to treat other diseases like vernal keratoconjuctivitis. Fluorescence quenching data revealed that levocabastine bind weakly to protein with binding constant in the order of 103 M-1. Förster resonance energy transfer results indicated the binding distance of 2.28 nm for levocabastine. Synchronous fluorescence result suggest slight blue shift for tryptophan upon levocabastine binding, binding of levocabastine impelled rise in α-helical structure in protein, while there are minimal changes in tertiary structure in protein. Moreover, docking results indicate levocabastine binds to pocket near to the drug site-I in HSA via hydrogen bonding and hydrophobic interactions. Understanding the interaction of levocabastine with HSA is significant for the advancement of therapeutic and diagnostic strategies for optimal treatment results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fahad M Almutairi
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Rehan Ajmal
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Adel Ibrahim Ahmad Al-Alawy
- Biochemistry Department, Faculty of Science, Physical Biochemistry Research Laboratory, University of Tabuk, Tabuk, Saudi Arabia
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Ashwin BCMA, Saravanan C, Stalin T, Muthu Mareeswaran P, Rajagopal S. FRET-based Solid-state Luminescent Glyphosate Sensor Using Calixarene-grafted Ruthenium(II)bipyridine Doped Silica Nanoparticles. Chemphyschem 2018; 19:2768-2775. [PMID: 29989285 DOI: 10.1002/cphc.201800447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Calixarene-functionalized luminescent nanoparticles were successfully fabricated for the FRET-based selective and sensitive detection of the organophosphorus pesticide glyphosate (GP). p-Tert-butylcalix[4]arene was grafted on the surface of [Ru(bpy)3 ]2+ incorporated SiNps to produce self-assembled nanosensors (RSC). FRET was switched on in the presence of GP by means of energy transfer due to binding with p-tert-butylcalix[4]arene grafted on the surface of the RSC. The FRET efficiency of the GP-RSC system was increased gradually with the addition of GP. The FRET efficiency was evaluated as 87.69 % and a high binding affinity was established by the binding constant value, 1.16×107 M-1 , using a Langmuir binding isotherm plot. The estimated limit of detection (LOD) was 7.91×10-7 M, which was lower than the Environmental Protection Agency (EPA) recommendation. The probe also effectively responds to real sample analysis. The sensitivity and selectivity was realized due to the efficient FRET towards the fluorescence properties of the [Ru(bpy)3 ]2+ complex.
Collapse
Affiliation(s)
| | - Chokalingam Saravanan
- Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamilnadu, India
| | - Thambusamy Stalin
- Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamilnadu, India
| | | | - Seenivasan Rajagopal
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India
| |
Collapse
|
4
|
Formation of complexes between tannic acid with bovine serum albumin, egg ovalbumin and bovine beta-lactoglobulin. Food Res Int 2017; 102:195-202. [DOI: 10.1016/j.foodres.2017.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 11/18/2022]
|
5
|
Ashwin BCMA, Herculin Arun Baby A, Prakash M, Hochlaf M, Muthu Mareeswaran P. A combined experimental and theoretical study on p-
sulfonatocalix[4]arene encapsulated 7-methoxycoumarin. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Muthuramalingam Prakash
- SRM Research Institute and Department of Chemistry; SRM University; Kattankulathur Tamil Nadu India
| | - Majdi Hochlaf
- Laboratoire Modélisation et Simulation Multi-Echelle, UMR 8208 CNRS; University Paris-Est; Marne la Vallée Cedex 2 France
| | | |
Collapse
|
6
|
Spectral and electrochemical investigation of 1,8-diaminonaphthalene upon encapsulation of p-sulfonatocalix[4]arene. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0729-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Li X, Yan Y. Comparative Study of the Interactions between Ovalbumin and five Antioxidants by Spectroscopic Methods. J Fluoresc 2016; 27:213-225. [DOI: 10.1007/s10895-016-1948-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 02/05/2023]
|
8
|
Hosseinzadeh R, Nemati M, Zadmard R, Mohadjerani M. Amidofluorene-appended lower rim 1,3-diconjugate of calix[4]arene: synthesis, characterization and highly selective sensor for Cu(2.). Beilstein J Org Chem 2016; 12:1749-57. [PMID: 27559419 PMCID: PMC4979684 DOI: 10.3762/bjoc.12.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/14/2016] [Indexed: 11/23/2022] Open
Abstract
Functionalization of calix[4]arene with amidofluorene moieties at the lower rim led to formation of the 1,3-diconjugate of calix[4]arene L as a novel fluorescent chemosensor for Cu2+. The receptor molecule L exhibited a pronounced selectivity towards Cu2+ over other mono and divalent ions. The formation of the complex between L and Cu2+ was evaluated by absorption, fluorescence and 1H NMR spectroscopy. The sensor L showed a remarkable color change from colorless to purple and a fluorescence quenching only upon interaction with Cu2+. The 1:1 stoichiometry of the obtained complex has been determined by Job’s plot. The association constant determined by fluorescence titration was found to be 1.8 × 106 M−1. The sensor showed a linear response toward Cu2+ in the concentration range from 1 to 10 µM with a detection limit of 9.6 × 10−8 M.
Collapse
Affiliation(s)
- Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad Nemati
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Reza Zadmard
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI), Tehran, Iran
| | - Maryam Mohadjerani
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
9
|
Sangiliapillai R, Arumugam R, Eswaran R, Seenivasan R. Micellar effect on the photophysics of heteroleptic ruthenium(II)-phenanthrolinedisulfonato complexes. LUMINESCENCE 2015; 31:30-7. [PMID: 25900090 DOI: 10.1002/bio.2917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/06/2022]
Abstract
Luminescent heteroleptic ruthenium(II) complexes of type RuLn X(3-n) [L = 1,10-phenanthroline (phen), X = 4,7 diphenyl phenanthroline disulfonate, (dpsphen) n = 0,1,2,3] were synthesized and their photophysical properties investigated in homogeneous and cationic (CTAB), anionic (SDS) and nonionic (Triton X-100) micelles. The luminescent quantum yield and lifetime of the complexes were found to increase in the presence of micellar media and on the introduction of a disulfonate ligand into the coordination sphere. Both electrostatic and hydrophobic interactions play an important role in the micellar media. Thus, by changing the nature of the ligands and the medium, we were able to tune the photophysical properties of Ru(II) complexes.
Collapse
Affiliation(s)
| | - Ramdass Arumugam
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India
| | - Rajkumar Eswaran
- Department of Chemistry, Madras Christian College, Chennai, Tamilnadu, India
| | - Rajagopal Seenivasan
- Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India
| |
Collapse
|
10
|
Synthesis, characterization, DNA/protein binding and in vitro cytotoxic evaluation of new Ru(III) complexes containing aroylhydrazone ligands: Does hydrogen bonding influence the coordination behavior of hydrazones? Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.01.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Ayaz Ahmed KB, Reshma E, Mariappan M, Anbazhagan V. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:1292-1297. [PMID: 25306128 DOI: 10.1016/j.saa.2014.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2',3'-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 10(5) M(-1), which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics.
Collapse
Affiliation(s)
- Khan Behlol Ayaz Ahmed
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudaram, Thanjavur, Tamil Nadu, India
| | - Elamvazhuthi Reshma
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudaram, Thanjavur, Tamil Nadu, India
| | - Mariappan Mariappan
- Department of Chemistry, SRM University, Kattankulathur, Chennai, Tamil Nadu, India
| | - Veerappan Anbazhagan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thirumalaisamudaram, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
12
|
Photoinduced Electron Transfer Reactions of Ruthenium(II)-Complexes Containing Amino Acid with Quinones. J Fluoresc 2014; 24:875-84. [DOI: 10.1007/s10895-014-1365-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/05/2014] [Indexed: 01/24/2023]
|
13
|
Gomathi Sankareswari V, Vinod D, Mahalakshmi A, Alamelu M, Kumaresan G, Ramaraj R, Rajagopal S. Interaction of oxovanadium(iv)–salphen complexes with bovine serum albumin and their cytotoxicity against cancer. Dalton Trans 2014; 43:3260-72. [DOI: 10.1039/c3dt52505h] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An oxovanadium(iv)–salphen complex acts as a probe for bovine serum albumin and shows cytotoxicity against cancer cells.
Collapse
Affiliation(s)
| | - Devaraj Vinod
- College of Pharmacy
- Madras Medical College
- Chennai – 600003, India
| | | | - Meena Alamelu
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai, India
| | - Ganesan Kumaresan
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai, India
| | - Ramasamy Ramaraj
- School of Chemistry
- Madurai Kamaraj University
- Madurai – 625 021, India
| | | |
Collapse
|
14
|
Optical Recognition of Anions by Ruthenium(II)-Bipyridine-Calix[4]Arene System. J Fluoresc 2013; 23:997-1006. [DOI: 10.1007/s10895-013-1226-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
|
15
|
Sutariya PG, Pandya A, Lodha A, Menon SK. Fluorescence switch on–off–on receptor constructed of quinoline allied calix[4]arene for selective recognition of Cu2+ from blood serum and F− from industrial waste water. Analyst 2013; 138:2531-5. [DOI: 10.1039/c3an00209h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|