1
|
Takahashi S, Oshige M, Katsura S, Nagahara Y. A new fluorescence labeling method for molecular analysis of double-stranded DNA. Anal Biochem 2023; 662:115000. [PMID: 36470466 DOI: 10.1016/j.ab.2022.115000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
In this study, a double-stranded DNA (dsDNA) fluorescent labeling method was developed using the fusion proteins of fluorescent protein (FP), and 7 kDa DNA-binding family members including Sso7d from Sulfolobus solfataricus, Aho7c from Acidianus hospitalis, ATSV7 from Acidianus tailed spindle virus and Sto7 from Sulfolobus tokodaii. Using this fluorescent DNA labeling method, we succeeded in single-molecule imaging of bacteriophage λDNA molecules stretched on glass surfaces. The fluorescence of the λDNA with FP fusion proteins decayed 2.4- to 6.4-fold slower than that of the typical intercalating method with SYTOX Green (SxG). In addition, the dynamic behaviors of FP-fused Aho7c-λDNA were relaxed and stretched with and without buffer flow, respectively, in microflow channels and were similar to that with typical intercalating dye, such as YOYO-1 and SxG. this fluorescent DNA labeling method. This fluorescent DNA labeling method can solve the problem of rapid fluorescence decay due to the intercalating dyes and therefore can be expected as an alternative to compound-based fluorescent dye. Thus, this study establishes FP fusion proteins as useful fluorescent DNA probes at the single-molecule level.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun, Saitama, 350-0394, Japan.
| | - Masahiko Oshige
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan; Gunma University Center for Food Science and Wellness (GUCFW), Aramaki, Gunma, 371-8510, Japan
| | - Shinji Katsura
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan; Gunma University Center for Food Science and Wellness (GUCFW), Aramaki, Gunma, 371-8510, Japan
| | - Yukitoshi Nagahara
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama-cho, Hiki-gun, Saitama, 350-0394, Japan
| |
Collapse
|
2
|
Takahashi S, Oshige M, Katsura S. DNA Manipulation and Single-Molecule Imaging. Molecules 2021; 26:1050. [PMID: 33671359 PMCID: PMC7922115 DOI: 10.3390/molecules26041050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/22/2022] Open
Abstract
DNA replication, repair, and recombination in the cell play a significant role in the regulation of the inheritance, maintenance, and transfer of genetic information. To elucidate the biomolecular mechanism in the cell, some molecular models of DNA replication, repair, and recombination have been proposed. These biological studies have been conducted using bulk assays, such as gel electrophoresis. Because in bulk assays, several millions of biomolecules are subjected to analysis, the results of the biological analysis only reveal the average behavior of a large number of biomolecules. Therefore, revealing the elementary biological processes of a protein acting on DNA (e.g., the binding of protein to DNA, DNA synthesis, the pause of DNA synthesis, and the release of protein from DNA) is difficult. Single-molecule imaging allows the analysis of the dynamic behaviors of individual biomolecules that are hidden during bulk experiments. Thus, the methods for single-molecule imaging have provided new insights into almost all of the aspects of the elementary processes of DNA replication, repair, and recombination. However, in an aqueous solution, DNA molecules are in a randomly coiled state. Thus, the manipulation of the physical form of the single DNA molecules is important. In this review, we provide an overview of the unique studies on DNA manipulation and single-molecule imaging to analyze the dynamic interaction between DNA and protein.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Division of Life Science and Engineering, School of Science and Engineering, Tokyo Denki University, Hatoyama-cho, Hiki-gun, Saitama 350-0394, Japan;
| | - Masahiko Oshige
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| | - Shinji Katsura
- Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
3
|
Takahashi S, Motooka S, Kawasaki S, Kurita H, Mizuno T, Matsuura SI, Hanaoka F, Mizuno A, Oshige M, Katsura S. Direct single-molecule observations of DNA unwinding by SV40 large tumor antigen under a negative DNA supercoil state. J Biomol Struct Dyn 2017; 36:32-44. [PMID: 27928933 DOI: 10.1080/07391102.2016.1269689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Superhelices, which are induced by the twisting and coiling of double-helical DNA in chromosomes, are thought to affect transcription, replication, and other DNA metabolic processes. In this study, we report the effects of negative supercoiling on the unwinding activity of simian virus 40 large tumor antigen (SV40 TAg) at a single-molecular level. The supercoiling density of linear DNA templates was controlled using magnetic tweezers and monitored using a fluorescent microscope in a flow cell. SV40 TAg-mediated DNA unwinding under relaxed and negative supercoil states was analyzed by the direct observation of both single- and double-stranded regions of single DNA molecules. Increased negative superhelicity stimulated SV40 TAg-mediated DNA unwinding more strongly than a relaxed state; furthermore, negative superhelicity was associated with an increased probability of SV40 TAg-mediated DNA unwinding. These results suggest that negative superhelicity helps to regulate the initiation of DNA replication.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan.,f Japan Society for the Promotion of Science
| | - Shinya Motooka
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan
| | - Shohei Kawasaki
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan
| | - Hirofumi Kurita
- b Department of Environmental and Life Sciences, Graduate School of Engineering , Toyohashi University of Technology , Toyohashi , Japan
| | - Takeshi Mizuno
- c Cellular Dynamics Laboratory , RIKEN, Wako , Saitama , Japan
| | - Shun-Ichi Matsuura
- d Research Institute for Chemical Process Technology , National Institute of Advanced Industrial Science and Technology (AIST) , Sendai , Japan
| | - Fumio Hanaoka
- e Faculty of Science, Institute for Biomolecular Science , Gakushuin University , Tokyo , Japan
| | - Akira Mizuno
- b Department of Environmental and Life Sciences, Graduate School of Engineering , Toyohashi University of Technology , Toyohashi , Japan
| | - Masahiko Oshige
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan
| | - Shinji Katsura
- a Department of Environmental Engineering Science, Graduate School of Science and Technology , Gunma University , Kiryu , Japan
| |
Collapse
|
4
|
Takahashi S, Motooka S, Usui T, Kawasaki S, Miyata H, Kurita H, Mizuno T, Matsuura SI, Mizuno A, Oshige M, Katsura S. Direct single-molecule observations of local denaturation of a DNA double helix under a negative supercoil state. Anal Chem 2015; 87:3490-7. [PMID: 25697222 DOI: 10.1021/acs.analchem.5b00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effects of a negative supercoil on the local denaturation of the DNA double helix were studied at the single-molecule level. The local denaturation in λDNA and λDNA containing the SV40 origin of DNA replication (SV40ori-λDNA) was directly observed by staining single-stranded DNA regions with a fusion protein comprising the ssDNA binding domain of a 70-kDa subunit of replication protein A and an enhanced yellow fluorescent protein (RPA-YFP) followed by staining the double-stranded DNA regions with YOYO-1. The local denaturation of λDNA and SV40ori-λDNA under a negative supercoil state was observed as single bright spots at the single-stranded regions. When negative supercoil densities were gradually increased to 0, -0.045, and -0.095 for λDNA and 0, -0.047, and -0.1 for SV40ori-λDNA, single bright spots at the single-stranded regions were frequently induced under higher negative supercoil densities of -0.095 for λDNA and -0.1 for SV40ori-λDNA. However, single bright spots of the single-stranded regions were rarely observed below a negative supercoil density of -0.045 and -0.047 for λDNA and SV40ori-λDNA, respectively. The probability of occurrence of the local denaturation increased with negative superhelicity for both λDNA and SV40ori-λDNA.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- †Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Shinya Motooka
- †Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Tomohiro Usui
- †Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Shohei Kawasaki
- †Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Hidefumi Miyata
- †Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Hirofumi Kurita
- ‡Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Takeshi Mizuno
- §Cellular Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Shun-ichi Matsuura
- ∥Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Miyagi 983-8551, Japan
| | - Akira Mizuno
- ‡Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Masahiko Oshige
- †Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Shinji Katsura
- †Department of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| |
Collapse
|
5
|
Takahashi S, Usui T, Kawasaki S, Miyata H, Kurita H, Matsuura SI, Mizuno A, Oshige M, Katsura S. Real-time single-molecule observations of T7 Exonuclease activity in a microflow channel. Anal Biochem 2014; 457:24-30. [PMID: 24751469 DOI: 10.1016/j.ab.2014.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 12/16/2022]
Abstract
T7 Exonuclease (T7 Exo) DNA digestion reactions were studied using direct single-molecule observations in microflow channels. DNA digestion reactions were directly observed by staining template DNA double-stranded regions with SYTOX Orange and staining single-stranded (digested) regions with a fluorescently labeled ssDNA-recognizing peptide (ssBP-488). Sequentially acquired photographs demonstrated that a double-stranded region monotonously shortened as a single-stranded region monotonously increased from the free end during a DNA digestion reaction. Furthermore, DNA digestion reactions were directly observed both under pulse-chase conditions and under continuous buffer flow conditions with T7 Exo. Under pulse-chase conditions, the double-stranded regions of λDNA monotonously shortened by a DNA digestion reaction with a single T7 Exo molecule, with an estimated average DNA digestion rate of 5.7 bases/s and a processivity of 6692 bases. Under continuous buffer flow conditions with T7 Exo, some pauses were observed during a DNA digestion reaction and double-stranded regions shortened linearly except during these pauses. The average DNA digestion rate was estimated to be 5.3 bases/s with a processivity of 5072 bases. Thus, the use of our direct single-molecule observations using a fluorescently labeled ssDNA-recognizing peptide (ssBP-488) was an effective analytic method for investigating DNA metabolic processes.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Tomohiro Usui
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shohei Kawasaki
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hidefumi Miyata
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hirofumi Kurita
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Shun-ichi Matsuura
- Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Miyagi 983-8551, Japan
| | - Akira Mizuno
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan
| | - Masahiko Oshige
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shinji Katsura
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
6
|
Takahashi S, Kawasaki S, Miyata H, Kurita H, Mizuno T, Matsuura SI, Mizuno A, Oshige M, Katsura S. A new direct single-molecule observation method for DNA synthesis reaction using fluorescent replication protein A. SENSORS 2014; 14:5174-82. [PMID: 24625741 PMCID: PMC4003986 DOI: 10.3390/s140305174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/25/2014] [Accepted: 03/07/2014] [Indexed: 11/29/2022]
Abstract
Using a single-stranded region tracing system, single-molecule DNA synthesis reactions were directly observed in microflow channels. The direct single-molecule observations of DNA synthesis were labeled with a fusion protein consisting of the ssDNA-binding domain of a 70-kDa subunit of replication protein A and enhanced yellow fluorescent protein (RPA-YFP). Our method was suitable for measurement of DNA synthesis reaction rates with control of the ssλDNA form as stretched ssλDNA (+flow) and random coiled ssλDNA (−flow) via buffer flow. Sequentially captured photographs demonstrated that the synthesized region of an ssλDNA molecule monotonously increased with the reaction time. The DNA synthesis reaction rate of random coiled ssλDNA (−flow) was nearly the same as that measured in a previous ensemble molecule experiment (52 vs. 50 bases/s). This suggested that the random coiled form of DNA (−flow) reflected the DNA form in the bulk experiment in the case of DNA synthesis reactions. In addition, the DNA synthesis reaction rate of stretched ssλDNA (+flow) was approximately 75% higher than that of random coiled ssλDNA (−flow) (91 vs. 52 bases/s). The DNA synthesis reaction rate of the Klenow fragment (3′-5′exo–) was promoted by DNA stretching with buffer flow.
Collapse
Affiliation(s)
- Shunsuke Takahashi
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, Gunma 3768515, Japan.
| | - Shohei Kawasaki
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, Gunma 3768515, Japan.
| | - Hidefumi Miyata
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, Gunma 3768515, Japan.
| | - Hirofumi Kurita
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Aichi 4418580, Japan.
| | - Takeshi Mizuno
- Cellular Dynamics Laboratory, RIKEN, Saitama 3510198, Japan.
| | - Shun-ichi Matsuura
- Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Miyagi 9838551, Japan.
| | - Akira Mizuno
- Department of Environmental and Life Sciences, Graduate School of Engineering, Toyohashi University of Technology, Aichi 4418580, Japan.
| | - Masahiko Oshige
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, Gunma 3768515, Japan.
| | - Shinji Katsura
- Department of Chemical and Environmental Engineering, Graduate School of Engineering, Gunma University, Gunma 3768515, Japan.
| |
Collapse
|