1
|
Chen J, Li T, Lin C, Hou Y, Cheng S, Gao B. Green synthesis of red-emitting carbon dots for bioimaging, sensing, and antibacterial applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125458. [PMID: 39579727 DOI: 10.1016/j.saa.2024.125458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
It is a highly desirable and formidable challenge to synthesize carbon dots with long-wavelength emission using green synthesis. In this work, we explored red-emitting carbon dots (rCDs) via a hydrothermal strategy and their multifunctional application for bioimaging in vivo/vitro, curcumin sensing, and antibacterial materials. As-prepared rCDs were water-soluble and monodispersed with an average diameter of 2.34 nm. Significantly, these rCDs exhibited low toxicity and outstanding biocompatibility, which was consistent with the excellent bioimaging performance in living cells, zebrafish, and nude mice, providing them a promising prospect for clinical applications. Meanwhile, the obtained rCDs were also used as a fluorescent probe for sensitive detection of curcumin in a wide linear range of 0.03-135.73 μM with a limit of detection of 29.37 nM. Furthermore, quaternized rCDs were designed and used as antibacterial material with minimum inhibitory concentrations against Staphylococcus aureus and Escherichia coli of 0.15 mg/mL and 0.5 mg/mL, respectively, which advanced the development of novel antibacterial agents and broadened the applications of red-emitting CDs. Therefore, this work provided multifunctional CDs with red emission for use in the fields of biological imaging, fluorescence sensing, and antibacterial materials.
Collapse
Affiliation(s)
- Jiao Chen
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Ting Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Chengzhang Lin
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yongxing Hou
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Shuanghuai Cheng
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| | - Bingmiao Gao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, School of Pharmacy, Hainan Medical University, Haikou, China.
| |
Collapse
|
2
|
Eskandari M, Wang L, Milián-Medina B, Gierschner J. Paper and Pencil Design of Color-Pure Organic Emitters: The Curious Case of Xanthene Dyes. J Phys Chem A 2025; 129:1599-1608. [PMID: 39885765 DOI: 10.1021/acs.jpca.4c07313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The quest for color-pure emitters for multicolor bioimaging as well as for ultrahigh definition organic light-emitting diodes demands facile design concepts to avoid tedious synthetic or computational trial-and-error procedures. We have recently presented a simple recipe to construct color-pure blue emitters, which combines basic resonance structure and frontier molecular orbital treatments; this recipe applies to multiresonant type emitters and allows to enlarge the chemical space toward novel structural motifs. In the current work, we show that such fundamental considerations further apply to the structurally entirely different family of xanthene dyes. Opposite to the related polymethine dye family with small bond length alternation (BLA) in the ground and in the excited state (S0, S1), however, xanthene dyes display large BLA in S0 and in S1, so that the overall change in BLA, ΔBL, is small. This gives equally rise to color-pure emission; the underlying reasons for this curious behavior are carved out in the current study. This generalization of the recipe in fact constitutes the desired "paper and pencil" design strategy, spanning now the whole visible range.
Collapse
Affiliation(s)
- Morteza Eskandari
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| | - Begoña Milián-Medina
- Department for Physical Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
3
|
Pordel M, Gheibi H, Sharif A. Recent Advances in the Synthesis and Optical Applications of Acridine-based Hybrid Fluorescent Dyes. J Fluoresc 2024:10.1007/s10895-024-04001-3. [PMID: 39417934 DOI: 10.1007/s10895-024-04001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Acridine-based hybrid fluorescent dyes represent a category of dyes that integrate the acridine chromophore with other functional groups or materials to enhance their fluorescence properties. These dyes have garnered substantial attention across various domains, encompassing bioimaging, sensing, and optoelectronics. In recent years, researchers have directed their efforts toward fabricating acridine-based hybrid fluorescent dyes with improved water solubility, biocompatibility, and targeting capabilities. These advancements have facilitated their utilization in biological imaging applications, such as monitoring cellular processes, investigating protein-protein interactions, and detecting specific biomolecules. This review delineates the recent progress in synthesizing acridine-based hybrid fluorescent dyes and their applications in optical properties over the past decade. This review is anticipated to catalyze the development of innovative fluorescent materials featuring heightened properties and functionalities.
Collapse
Affiliation(s)
- Mehdi Pordel
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hanieh Gheibi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ayda Sharif
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
4
|
Kozyreva ZV, Demina PA, Sapach AY, Terentyeva DA, Gusliakova OI, Abramova AM, Goryacheva IY, Trushina DB, Sukhorukov GB, Sindeeva OA. Multiple dyes applications for fluorescent convertible polymer capsules as macrophages tracking labels. Heliyon 2024; 10:e30680. [PMID: 38813172 PMCID: PMC11133507 DOI: 10.1016/j.heliyon.2024.e30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Tracing individual cell pathways among the whole population is crucial for understanding their behavior, cell communication, migration dynamics, and fate. Optical labeling is one approach for tracing individual cells, but it typically requires genetic modification to induce the generation of photoconvertible proteins. Nevertheless, this approach has limitations and is not applicable to certain cell types. For instance, genetic modification often leads to the death of macrophages. This study aims to develop an alternative method for labeling macrophages by utilizing photoconvertible micron-sized capsules capable of easy internalization and prolonged retention within cells. Thermal treatment in a polyvinyl alcohol gel medium is employed for the scalable synthesis of capsules with a wide range of fluorescent dyes, including rhodamine 6G, pyronin B, fluorescein, acridine yellow, acridine orange, thiazine red, and previously reported rhodamine B. The fluorescence brightness, photostability, and photoconversion ability of the capsules are evaluated using confocal laser scanning microscopy. Viability, uptake, mobility, and photoconversion studies are conducted on RAW 264.7 and bone marrow-derived macrophages, serving as model cell lines. The production yield of the capsules is increased due to the use of polyvinyl alcohol gel, eliminating the need for conventional filtration steps. Capsules entrapping rhodamine B and rhodamine 6G meet all requirements for intracellular use in individual cell tracking. Mass spectrometry analysis reveals a sequence of deethylation steps that result in blue shifts in the dye spectra upon irradiation. Cellular studies on macrophages demonstrate robust uptake of the capsules. The capsules exhibit minimal cytotoxicity and have a negligible impact on cell motility. The successful photoconversion of RhB-containing capsules within cells highlights their potential as alternatives to photoconvertible proteins for individual cell labeling, with promising applications in personalized medicine.
Collapse
Affiliation(s)
- Zhanna V. Kozyreva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Polina A. Demina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Anastasiia Yu Sapach
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Daria A. Terentyeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| | - Olga I. Gusliakova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Anna M. Abramova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Irina Yu Goryacheva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012, Saratov, Russia
| | - Daria B. Trushina
- Institute of Molecular Theranostics, Sechenov University, 8-2 Trubetskaya Str., 119991, Moscow, Russia
| | - Gleb B. Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025, Moscow, Russia
| | - Olga A. Sindeeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 30 b.1 Bolshoy Boulevard, 121205, Moscow, Russia
| |
Collapse
|
5
|
Debnath S, Schäfer A, Ito S, Strelnikov D, Schneider R, Haupa KA, Kappes MM. Vibrationally Resolved Absorption, Fluorescence, and Preresonance Raman Spectroscopy of Isolated Pyronin Y Cation at 5 K. J Phys Chem Lett 2023; 14:10553-10560. [PMID: 37975705 DOI: 10.1021/acs.jpclett.3c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Exploring how charge-changing affects the photoluminescence of small organic dyes presents challenges. Here, helium tagging photodissociation (PD) action spectroscopy in the gas phase and dispersed laser-induced fluorescence (DF) spectroscopy in the solid Ne matrix are used to compare the intrinsic photophysical properties of pyronin Y cation [PY]+ and its one electron-reduced neutral radical [PY]• at 5 K. Whereas the cation shows efficient visible photoluminescence, no emission from the neutral, in line with theoretical predictions, was detected. B3LYP/aug-cc-pVDZ calculations based on the TD-DFT/FCHT method allow for unambiguous assignment of recorded vibrationally resolved absorption and emission spectra. Surprisingly, our experimental sensitivity was high enough to also observe electronic preresonance Raman (ePR-Raman) spectra of [PY]+, with a significant efficiency factor (EF). These characteristics of the [PY]•/[PY]+ pair suggest that appropriately functionalized derivatives may open new perspectives in the area of in vivo bioimagining microscopy and find applications in various sophisticated stimulated-Raman spectroscopies.
Collapse
Affiliation(s)
- Sreekanta Debnath
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Alexander Schäfer
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dmitry Strelnikov
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Rabea Schneider
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Karolina A Haupa
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Walls B, Suleiman O, Arambula C, Hall A, Adeyiga O, Boumelhem F, Koh J, Odoh SO, Woydziak ZR. Improving the Brightness of Pyronin Fluorophore Systems through Quantum-Mechanical Predictions. J Phys Chem Lett 2022; 13:8312-8318. [PMID: 36040023 PMCID: PMC10543078 DOI: 10.1021/acs.jpclett.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pyronin class of fluorophores serves a critical role in numerous imaging applications, particularly involving preferential staining of RNA through base pair intercalation. Despite this important role in molecular staining applications, the same set of century-old pyronins (i.e., pyronin Y (PY) and pyronin B (PB)), which possess relatively low fluorophore brightness, are still predominantly being used due to the lack of methodology for generating enhanced variants. Here, we use TD-DFT calculations of interconversion energies between structures on the S1 surface as a preliminary means to evaluate fluorophore brightness for a proposed set of pyronins containing variable substitution patterns at the 2, 3, 6, and 7 positions. Using a nucleophilic aromatic substitution/hydride addition approach, we synthesized the same set of pyronins and demonstrate that quantum-mechanical computations are useful for predicting fluorophore performance. We produced the brightest series of pyronin fluorophores described to date, which possess considerable gains over PY and PB.
Collapse
Affiliation(s)
- Brandon Walls
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | | | - Carlos Arambula
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | - Alyssa Hall
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | | | - Fadel Boumelhem
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| | - Jungjae Koh
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154
| | - Samuel O. Odoh
- Department of Chemistry, University of Nevada, Reno, NV 89557
| | - Zachary R. Woydziak
- Department of Physical and Life Sciences, Nevada State College, Henderson, NV 89002
| |
Collapse
|
7
|
Liu T, Huang J, Ding H, Zhan C, Wang S. Molecular structure perspective on Temperature-Sensitive properties of rhodamine aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121166. [PMID: 35313177 DOI: 10.1016/j.saa.2022.121166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
As one of the most commonly used organic fluorescent dyes, recently rhodamines have been successfully employed in temperature sensing. However, few works have been reported on their temperature-sensitive properties, which inevitably limiting their further applications. In order to solve such problem, we investigated temperature-sensitive properties of rhodamine 110, 123, 19, 6G, B and 3B focusing on their fluorescence emission spectra; and analyzed them in the molecular structure perspective. It is demonstrated that the fluorescence emission intensities of all studied rhodamines decreased with higher temperature, which inevitably enhances the probability of collisions among molecules, thus definitely leads to energy loss in fluorescence emission. While these rhodamines still have various temperature sensitivities mainly due to the substitutes: the substitute on the benzene carboxylate has little effect; the amino substituents of the three-ring xanthene enhance the temperature sensitivity due to their rotation weakening the rigidity of the three-ring xanthene; and the methyl substituents on the three-ring xanthene reduce the temperature sensitivity by enhancing the rigidity and stability of the three-ring xanthene as well as hindering the rotation of ethylamino. These findings can also be extended to other organic fluorescent dyes proved by coumarins comparable to rhodamines. The results provided by this work can be useful reference and guidance to further develop organic fluorescent dyes especially for temperature sensing.
Collapse
Affiliation(s)
- Ting Liu
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Jianwei Huang
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - He Ding
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | - Chengsen Zhan
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, Fujian 361021, China
| | | |
Collapse
|
8
|
A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy. Nat Commun 2022; 13:2264. [PMID: 35477933 PMCID: PMC9046415 DOI: 10.1038/s41467-022-29547-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022] Open
Abstract
The quality and application of super-resolution fluorescence imaging greatly lie in the dyes’ properties, including photostability, brightness, and Stokes shift. Here we report a synergistic strategy to simultaneously improve such properties of regular fluorophores. Introduction of quinoxaline motif with fine-tuned electron density to conventional rhodamines generates new dyes with vibration structure and inhibited twisted-intramolecular-charge-transfer (TICT) formation synchronously, thus increasing the brightness and photostability while enlarging Stokes shift. The new fluorophore YL578 exhibits around twofold greater brightness and Stokes shift than its parental fluorophore, Rhodamine B. Importantly, in Stimulated Emission Depletion (STED) microscopy, YL578 derived probe possesses a superior photostability and thus renders threefold more frames than carbopyronine based probes (CPY-Halo and 580CP-Halo), known as photostable fluorophores for STED imaging. Furthermore, the strategy is well generalized to offer a new class of bright and photostable fluorescent probes with long Stokes shift (up to 136 nm) for bioimaging and biosensing. Super-resolution microscopy is a powerful tool for cellular studies but requires bright and stable fluorescent probes. Here, the authors report on a strategy to introduce quinoxaline motifs to conventional probes to make them brighter, more photostable, larger Stokes shift, and demonstrate the probes for biosensing applications.
Collapse
|
9
|
Renault K, Chevalier A, Bignon J, Jacquemin D, Richard J, Romieu A. Coumarin‐Pyronin Hybrid Dyes: Synthesis, Fluorescence Properties and Theoretical Calculations**. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kévin Renault
- ICMUB, UMR 6302, CNRS Univ. Bourgogne Franche-Comté 9, Avenue Alain Savary 21000 Dijon France
| | - Arnaud Chevalier
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, Avenue de la Terrasse 91198 Gif-sur-Yvette France
| | - Denis Jacquemin
- CEISAM Lab, UMR 6230 Université de Nantes CNRS 44000 Nantes France
| | - Jean‐Alexandre Richard
- Functional Molecules and Polymers Institute of Chemical and Engineering Sciences (ICES) Agency for Science, Technology and Research (A*STAR) 8 Biomedical Grove, Neuros, #07-01 138665 Singapore Singapore
- Research and Technology Development Illumina 29 Woodlands Industrial Park E1 757716 Singapore Singapore
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS Univ. Bourgogne Franche-Comté 9, Avenue Alain Savary 21000 Dijon France
| |
Collapse
|
10
|
Jiménez-Mancilla NP, Aranda-Lara L, Morales-Ávila E, Camacho-López MA, Ocampo-García BE, Torres-García E, Estrada-Guadarrama JA, Santos-Cuevas CL, Isaac-Olivé K. Electron transfer reactions in rhodamine: Potential use in photodynamic therapy. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Martínek M, Váňa J, Šebej P, Navrátil R, Slanina T, Ludvíková L, Roithová J, Klán P. Photochemistry of a 9‐Dithianyl‐Pyronin Derivative: A Cornucopia of Reaction Intermediates Lead to Common Photoproducts. Chempluschem 2020; 85:2230-2242. [DOI: 10.1002/cplu.202000370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/12/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marek Martínek
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Peter Šebej
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry Faculty of Science Charles University Hlavova 2030/8 128 43 Prague Czech Republic
| | - Tomáš Slanina
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Lucie Ludvíková
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| | - Jana Roithová
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Petr Klán
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
- RECETOX Faculty of Science Masaryk University Kamenice 5 625 00 Brno Czech Republic
| |
Collapse
|
12
|
Sočo E, Kalembkiewicz J. Characterisation and utilisation of solid waste from coal combustion to modelling of sorption equilibrium in a bi-component system metal-dye. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:567-575. [PMID: 32089129 DOI: 10.1177/0734242x20904425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It was found that the chemical enhancement of fly ash from coal combustion by tetrabutylammonium bromide treatment yields an effective and economically feasible material for the treatment of chromium and basic dye Rhodamine B containing effluents. Characterisation of coal fly ash and treatment with tetrabutylammonium bromide were done by using a Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, confocal three-dimensional microscope, X-ray diffraction and laser particle sizer. The studies of equilibrium in a bi-component system by means of extended Langmuir, extended Langmuir-Freundlich and Jain-Snoeyink models were analysed. The estimation of parameters of sorption isotherms in a bi-component system metal-dye has shown that the best-of-fit calculated values of experimental data for both sorbates have been the Jain-Snoeyink model and the extended Langmuir model, but only in the case of a Rhodamine B. The maximum monolayer adsorption capacity of the fly ash-tetrabutylammonium bromide was found to be 863 mg g-1 and 670 mg g-1 for chromium and Rhodamine B, respectively.
Collapse
Affiliation(s)
- Eleonora Sočo
- Department of Inorganic and Analytical Chemistry, Rzeszów University of Technology, Rzeszów, Poland
| | - Jan Kalembkiewicz
- Department of Inorganic and Analytical Chemistry, Rzeszów University of Technology, Rzeszów, Poland
| |
Collapse
|
13
|
Molecular aggregates of pyronin dyes with polyelectrolyte polystyrene sulfonate (PSS) in aqueous solution. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Sueishi Y, Matsumoto Y, Kimata Y, Osawa Y, Inazumi N, Hanaya T. Characterization of group-inclusion complexations of rhodamine derivatives with native and 2,6-di-O-methylated β-cyclodextrins. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-00979-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Sočo E, Kalembkiewicz J. Enhanced sorption capacity of a metal-dye system from water effluents by using activated industrial waste. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:2284-2298. [PMID: 32245920 DOI: 10.2166/wst.2020.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Activated coal fly ash (FA) treated with NaOH and hexadecyltrimethylammonium bromide (HDTMABr) was used as adsorbent for removal of cadmium(II) ions and rhodamine B (RB) from an aqueous solution. Characterization of fly ash and FA-HDTMABr were done using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The sorption equilibrium in the system was analysed using isotherm models, such as Freundlich, Langmuir, generalized Langmuir-Freundlich, Redlich-Peterson, Jovanović, extended Jovanović, Tóth, Frumkin-Fowler-Guggenheim, Fowler-Guggenheim-Jovanović-Freundlich, Temkin, Dubinin-Radushkevich, Halsey, Brunauer, Emmett and Teller. The evaluation of the fit of the isotherms studied experimentally was carried out by means of the reduced chi-square test and the coefficient of determination. The maximum monolayer adsorption capacity of the FA-HDTMABr was found to be 744 mg·g-1 and 666 mg·g-1 for Cd(II) and RB, respectively. The PFO, PSO, Elovich mass transfer, liquid film diffusion and intra-particle diffusion models were analysed. Sorption kinetics data were well fitted by the PSO model. The Elovich and intra-particle model also revealed that there are two separate stages in the sorption process, namely, external diffusion and intra-particle diffusion.
Collapse
|
16
|
Benson N, Suleiman O, Odoh SO, Woydziak ZR. Pyrazole, Imidazole, and Isoindolone Dipyrrinone Analogues: pH-Dependent Fluorophores That Red-Shift Emission Frequencies in a Basic Solution. J Org Chem 2019; 84:11856-11862. [PMID: 31438666 DOI: 10.1021/acs.joc.9b01708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dipyrrinones are nonfluorescent yellow-pigmented constituents of bilirubin that undergo Z to E isomerization when excited with UV/blue light. Mechanical restriction of the E/Z isomerization process results in highly fluorescent compounds such as N,N-methylene-bridged dipyrrinones and xanthoglows. This manuscript describes the first examples of dipyrrinone analogues, which exhibit fluorescence without covalently linking the pyrole-pyrrolidine nitrogen atoms. Instead these analogues restrict E/Z isomerization through intramolecular hydrogen bonding, resulting in mild to moderately fluorescent compounds (ΦF = 0.01-0.30). Further, in basic solutions (pH > 12), the dipyrrinone analogues readily deprotonate and absorption/emission profiles of the fluorophores red-shifts by 10-49 nm. Directly from commercial materials, 10 analogues were prepared in 41-96% yields in one step. To estimate the capacity of which intramolecular hydrogen bonding has upon restricting the E/Z isomerization process, conformational energies of all analogues, in both the protonated and deprotonated species, were explored by using quantum-mechanical density functional theory (DFT) and time-dependent DFT calculations. The computed strengths of the intramolecular hydrogen bonds are related to the barriers of rotation about the 5-6 bond and both correlate with the experimentally measured fluorescence quantum yields.
Collapse
Affiliation(s)
- Nicole Benson
- Department of Physical and Life Sciences , Nevada State College , Henderson , Nevada 89002 , United States
| | - Olabisi Suleiman
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | - Samuel O Odoh
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | - Zachary R Woydziak
- Department of Physical and Life Sciences , Nevada State College , Henderson , Nevada 89002 , United States
| |
Collapse
|
17
|
Beşer BM, Arik M, Onganer Y. Photophysical and photodynamic properties of Pyronin Y in micellar media at different temperatures. LUMINESCENCE 2019; 34:415-425. [DOI: 10.1002/bio.3624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Burcu Meryem Beşer
- Department of ChemistryErzincan Binali Yıldırım University Erzincan Turkey
| | - Mustafa Arik
- Department of ChemistryAtatürk University Erzurum Turkey
| | - Yavuz Onganer
- Department of ChemistryAtatürk University Erzurum Turkey
| |
Collapse
|
18
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
19
|
Daly S, Kulesza A, Knight G, MacAleese L, Antoine R, Dugourd P. The Gas-Phase Photophysics of Eosin Y and its Maleimide Conjugate. J Phys Chem A 2016; 120:3484-90. [DOI: 10.1021/acs.jpca.6b01075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steven Daly
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Alexander Kulesza
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Geoffrey Knight
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Luke MacAleese
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Rodolphe Antoine
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - Philippe Dugourd
- Institut
Lumière Matière, Université Lyon 1 − CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| |
Collapse
|