1
|
Silpcharu K, Nguyen Nhu Pham Q, Sukwattanasinitt M, Rashatasakhon P. Dipicolylaminofluorene Derivatives for Fluorescent Sensing of Copper(II) Ion and Glyphosate. Chem Asian J 2025; 20:e202401622. [PMID: 39913866 DOI: 10.1002/asia.202401622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/18/2025] [Indexed: 05/13/2025]
Abstract
The contamination of water by toxic herbicides poses a significant environmental challenge, necessitating the development of reliable detection tools. In this study, novel dipicolylamino derivatives of fluorene and fluorenone were synthesized via Sonogashira cross-coupling reactions with high yields. These compounds demonstrated exceptional selectivity for fluorescence turn-off by Cu(II) ions, with detection limits of 0.99 μM and 1.11 μM in a DMSO-HEPES buffer system. Investigations using Job's plot, fluorescence recovery with EDTA, and mass spectrometry revealed that the sensing mechanism involves complexation between the compounds and Cu(II) ions. Notably, the Cu(II)-fluorene complex exhibited a selective fluorescence turn-on response to glyphosate, achieving a detection limit of 0.93 μM. Quantitative analysis in real water samples demonstrated good recovery rates, underscoring the practical utility of these fluorene and fluorenone derivatives in environmental monitoring.
Collapse
Affiliation(s)
- Komthep Silpcharu
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 11th floor MHMK Building, Pathumwan District, Bangkok, 10330, Thailand
| | - Quynh Nguyen Nhu Pham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 11th floor MHMK Building, Pathumwan District, Bangkok, 10330, Thailand
| | - Mongkol Sukwattanasinitt
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 11th floor MHMK Building, Pathumwan District, Bangkok, 10330, Thailand
| | - Paitoon Rashatasakhon
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 11th floor MHMK Building, Pathumwan District, Bangkok, 10330, Thailand
- Sustainable Environment Research Institute, Chulalongkorn University, 15th floor Sabbasastravicaya Building, Pathumwan District, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Boivin L, Schlachter A, Fortin D, Harvey PD. Truxene-to-Fluorenone Energy Transfer in a Robust Mesoporous Zn-MOF. Inorg Chem 2023. [PMID: 38109694 DOI: 10.1021/acs.inorgchem.3c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A new metal-organic framework (MOF; [Zn4O(hett)4/3(fluo)1/2(bdc)1/2]n; TFT-MOF) constructed on chromophoric ligands 5,5',10,10',15,15'-hexaethyltruxene-2,7,12-triacetate (hett), 9-fluorenone-2,7-dicarboxylate (fluo), terephthalate (bdc), and the Zn4O node has been prepared and identified by powder X-ray diffraction. This luminescent MOF exhibits large mesoporous pores of 2.7 nm based on computer modeling using density functional theory (DFT) calculations. The steady-state and time-resolved fluorescence spectra and photophysical parameters of TFT-MOF have been investigated and compared with those of the free ligands and their basic chromophores. All in all, TFT-MOF exhibits particularly efficient singlet-singlet energy-transfer processes described as 1(hett)* → (fluo) and 1(bdc)* → (fluo), leading to fluorescence arising for the fluo lumophore operating only through Förster resonance energy transfer (FRET) with an efficiency of transfer of up to >95%. This experimental conclusion was corroborated by DFT and time-dependent DFT (TDDFT). For the 1(hett)* → (fluo) process, the approximated overall rate constant of energy transfer was evaluated to be at most 2.04 × 1010 s-1 (using a Stern-Volmer approach of solution data and the relationship between distance and concentration). This process was analyzed using the Förster theory, where two intrapore energy transfer paths of center-to-center distances of 13 and 25 Å have been identified. TFT-MOF photosensitizes the formation of singlet oxygen (1O2 (1Σg)) as detected by its phosphorescence signal at 1275 nm.
Collapse
Affiliation(s)
- Léo Boivin
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Daniel Fortin
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
3
|
Górski K, Mech-Piskorz J, Pietraszkiewicz M. From truxenes to heterotruxenes: playing with heteroatoms and the symmetry of molecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj00816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a result of the modification of truxene, we can change the electronic structure or create multidimensional materials. Thus, the use of truxenes is very wide.
Collapse
Affiliation(s)
- Krzysztof Górski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Justyna Mech-Piskorz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Marek Pietraszkiewicz
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
4
|
Asavasuthiphan V, Nuisin R, Kraiya C, Sukwattanasinitt M, Rashatasakhon P. Ratiometric Fluorescent Sensor for Copper(II) and Phosphate Ions from Aminopyrene Derivatives. Photochem Photobiol 2021; 98:856-863. [PMID: 34861046 DOI: 10.1111/php.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
Three derivatives of 1-aminopyrene are functionalized with 2-picolyl and 2-picolinyl groups and are tested as fluorescent sensors for metal ions. The target compounds are successfully synthesized in yields of 50-90% and characterized by 1 H-NMR, 13 C-NMR, and HRMS. The compound with an amino picolyl group (P1) exhibits an excellent selectivity toward Cu(II) ion as the fluorescent signal shifts from 433 to 630 nm. From a fluorescence titration experiment, the limit of detection for Cu(II) ion is estimated as 0.19 µm. The fluorescence spectral shift by Cu(II) ion is reliant on the use of acetonitrile as a co-solvent, and the results from cyclic voltammetry and UV-Vis spectroscopy suggest that the sensing mechanism involves a coordination complex between the P1, acetonitrile and Cu(II) ion. Furthermore, this P1-Cu complex can also be used as a selective fluorescent sensor for PO4 3- ion with a detection limit of 0.44 µm.
Collapse
Affiliation(s)
- Voravin Asavasuthiphan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Roongkan Nuisin
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Charoenkwan Kraiya
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Sukwattanasinitt
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Paitoon Rashatasakhon
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Silpcharu K, Soonthonhut S, Sukwattanasinitt M, Rashatasakhon P. Fluorescent Sensor for Copper(II) and Cyanide Ions via the Complexation-Decomplexation Mechanism with Di(bissulfonamido)spirobifluorene. ACS OMEGA 2021; 6:16696-16703. [PMID: 34235342 PMCID: PMC8246698 DOI: 10.1021/acsomega.1c02744] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 05/27/2023]
Abstract
A novel spirobifluorene derivative bearing two bissulfonamido groups is successfully synthesized by Sonogashira coupling. This compound exhibits a strong fluorescence quenching by Cu(II) ion in a 50% mixture between acetonitrile and 20 mM pH 7.0 N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) buffer with a detection limit of 98.2 nM. However, this sensor also shows ratiometric signal shifts from blue to yellow in the presence of Zn(II), Pb(II), and Hg(II) ions. The static quenching mechanism is verified by the signal reversibility using ethylenediaminetetraacetic acid (EDTA) and the Stern-Volmer plots at varying temperatures. The Cu(II)-spirobifluorene complex shows a highly selective fluorescence enhancement upon the addition of CN- ion with the detection limit of 390 nM. The application of this complex for quantitative analysis of spiked CN- ion in real water samples resulted in good recoveries.
Collapse
Affiliation(s)
- Komthep Silpcharu
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Siraporn Soonthonhut
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Mongkol Sukwattanasinitt
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paitoon Rashatasakhon
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Wagay SA, Rather IA, Ali R. Functionalized Truxene Scaffold: A Promising Advanced Organic Material for Digital Era. ChemistrySelect 2019. [DOI: 10.1002/slct.201903076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Rashid Ali
- Department of ChemistryJamia Millia Islamia New Delhi- 110025 India
| |
Collapse
|