1
|
Lalitha R, Velmathi S. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects. J Fluoresc 2024; 34:15-118. [PMID: 37212978 DOI: 10.1007/s10895-023-03231-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023]
Abstract
Rhodamine-based chemosensors have sparked considerable interest in recent years due to their remarkable photophysical properties, which include high absorption coefficients, exceptional quantum yields, improved photostability, and significant red shifts. This article presents an overview of the diverse fluorometric, and colorimetric sensors produced from rhodamine, as well as their applications in a wide range of fields. The ability of rhodamine-based chemosensors to detect a wide range of metal ions, including Hg+2, Al3+, Cr3+, Cu2+, Fe3+, Fe2+, Cd2+, Sn4+, Zn2+, and Pb2+, is one of their major advantages. Other applications of these sensors include dual analytes, multianalytes, and relay recognition of dual analytes. Rhodamine-based probes can also detect noble metal ions such as Au3+, Ag+, and Pt2+. They have been used to detect pH, biological species, reactive oxygen and nitrogen species, anions, and nerve agents in addition to metal ions. The probes have been engineered to undergo colorimetric or fluorometric changes upon binding to specific analytes, rendering them highly selective and sensitive by ring-opening via different mechanisms such as Photoinduced Electron Transfer (PET), Chelation Enhanced Fluorescence (CHEF), Intramolecular Charge Transfer (ICT), and Fluorescence Resonance Energy Transfer (FRET). For improved sensing performance, light-harvesting dendritic systems based on rhodamine conjugates has also been explored for enhanced sensing performance. These dendritic arrangements permit the incorporation of numerous rhodamine units, resulting in an improvement in signal amplification and sensitivity. The probes have been utilised extensively for imaging biological samples, including imaging of living cells, and for environmental research. Moreover, they have been combined into logic gates for the construction of molecular computing systems. The usage of rhodamine-based chemosensors has created significant potential in a range of disciplines, including biological and environmental sensing as well as logic gate applications. This study focuses on the work published between 2012 and 2021 and emphasises the enormous research and development potential of these probes.
Collapse
Affiliation(s)
- Raguraman Lalitha
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
2
|
Li Q, Liu Y, Liang L, Zhang X, Huang K, Qin D. A terpyridyl-rhodamine hybrid fluorescent probe for discriminative sensing of Hg (II) and Cu (II) in water and applications for molecular logic gate and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123124. [PMID: 37451213 DOI: 10.1016/j.saa.2023.123124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Sensitive and discriminative sensing of more than one analyte with a single fluorescent probe is significant and challenging. Herein a new terpyridyl-rhodamine hybrid, namely TRH, has been rationally designed and prepared with two responsive groups in the molecular structure, which facilitate the discriminative detection of Hg2+ and Cu2+ ions in water with detection limits of 4.9 and 53.3 nM by ratiometric fluorescence change (F595/F485) and fluorescence quenching, respectively. Investigations show that the selectivity to Hg2+ ions can be attributed to Hg2+-promoted spirolactam ring opening and further hydrolysis, followed by a through-bond energy transfer (TBET) process. The selective fluorescence quenching to Cu2+ ions probably can be ascribed to the binding Cu2+ to terpyridyl that triggers a ligand-to-metal charge transfer (LMCT) process, which can also efficiently inhibit the TBET process induced by Hg2+ ions and promotes the discriminative sensing of Cu (II) and Hg (II). In addition, the fluorescent responses to Hg2+ and Cu2+ ions cover a wide pH range. Moreover, a combinatorial logic gate with the functions of NOR and INHIBIT has been fabricated by using Hg2+ and Cu2+ ions as chemical input signals, and fluorescence at 485 and 595 nm as output signals. Besides, TRH also exhibits sensitive and discriminative sensing ability to Hg2+ and Cu2+ ions by the fluorescence of rhodamine fluorophore. Significantly, based on the fluorescence signal output of rhodamine moiety, TRH can be used as a tracer for the discriminative sensing of Hg2+ and Cu2+ ions by using living cells.
Collapse
Affiliation(s)
- Qi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yuting Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Lijuan Liang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xiangyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
3
|
Said AI, Staneva D, Grabchev I. New Water-Soluble Poly(propylene imine) Dendrimer Modified with 4-Sulfo-1,8-naphthalimide Units: Sensing Properties and Logic Gates Mimicking. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115268. [PMID: 37299994 DOI: 10.3390/s23115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
A new water-soluble poly(propylene imine) dendrimer (PPI) modified with 4-sulfo-1,8-naphthalimid units (SNID) and its related structure monomer analog (SNIM) has been prepared by a simple synthesis. The aqueous solution of the monomer exhibited aggregation-induced emission (AIE) at 395 nm, while the dendrimer emitted at 470 nm due to an excimer formation beside the AIE at 395 nm. Fluorescence emission of the aqueous solution of either SNIM or SNID was significantly affected by traces of different miscible organic solvents, and the limits of detection were found to be less than 0.05% (v/v). Moreover, SNID exhibited the function to execute molecular size-based logic gates where it mimics XNOR and INHIBIT logic gates using water and ethanol as inputs and the AIE/excimer emissions as outputs. Hence, the concomitant execution of both XNOR and INHIBIT enables SNID to mimic digital comparators.
Collapse
Affiliation(s)
- Awad I Said
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407 Sofia, Bulgaria
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Desislava Staneva
- Department of Textile, Leader, and Fuels, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407 Sofia, Bulgaria
| |
Collapse
|
4
|
Sakr AR, Georgiev NI, Bojinov VB. Design and Synthesis of a Novel ICT Bichromophoric pH Sensing System Based on 1,8-Naphthalimide Fluorophores as a Two-Input Logic Gate and Its Antibacterial Evaluation. Molecules 2023; 28:molecules28083631. [PMID: 37110865 PMCID: PMC10145821 DOI: 10.3390/molecules28083631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The synthesis, sensor activity, and logic behavior of a novel 4-iminoamido-1,8-naphthalimide bichromophoric system based on a "fluorophore-receptor" architecture with ICT chemosensing properties is reported. The synthesized compound showed good colorimetric and fluorescence signaling properties as a function of pH and proved itself as a promising probe for the rapid detection of pH in an aqueous solution and base vapors in a solid state. The novel dyad is able to work as a two-input logic gate with chemical inputs H+ (Input 1) and HO- (Input 2) executing INHIBIT logic gate. The synthesized bichromophoric system and the corresponding intermediates demonstrated good antibacterial activity toward Gram (+) and Gram (-) bacteria when compared with the Gentamycin standard.
Collapse
Affiliation(s)
- Alaa R Sakr
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Nikolai I Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
| | - Vladimir B Bojinov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridsky Str., 1756 Sofia, Bulgaria
- Bulgarian Academy of Sciences, 1040 Sofia, Bulgaria
| |
Collapse
|
5
|
Said AI, Staneva D, Angelova S, Grabchev I. Self-Associated 1,8-Naphthalimide as a Selective Fluorescent Chemosensor for Detection of High pH in Aqueous Solutions and Their Hg 2+ Contamination. SENSORS (BASEL, SWITZERLAND) 2022; 23:399. [PMID: 36616999 PMCID: PMC9824833 DOI: 10.3390/s23010399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular charge transfer character. Moreover, the fluorescence emission quenched at higher pH as a result of photo-induced electron transfer (PET) from triazine moiety to 1,8-naphthalimide after cleaving hydrogen bonds in the self-associated dimers. Furthermore, the new chemosensor exhibited a good selectivity and sensitivity towards Hg2+ among all the used various cations and anions in the aqueous solution of ethanol (5:1, v/v, pH = 7.2, Tampon buffer). NI-DAT emission at 540 nm was quenched remarkably only by Hg2+, even in the presence of other cations or anions as interfering analytes. Job's plot revealed a 2:1 stoichiometric ratio for NI-DAT/Hg2+ complex, respectively.
Collapse
Affiliation(s)
- Awad I. Said
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Desislava Staneva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| |
Collapse
|
6
|
A multi-channel rhodamine-pyrazole based chemosensor for sensing pH, Cu2+, CN– and Ba2+ and its function as a digital comparator. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Georgiev NI, Krasteva PV, Bakov VV, Bojinov VB. A Highly Water-Soluble and Solid State Emissive 1,8-Naphthalimide as a Fluorescent PET Probe for Determination of pHs, Acid/Base Vapors, and Water Content in Organic Solvents. Molecules 2022; 27:molecules27134229. [PMID: 35807479 PMCID: PMC9268048 DOI: 10.3390/molecules27134229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/25/2022] Open
Abstract
A new highly water-soluble 1,8-naphthalimide fluorophore designed on the “fluorophore-spacer-receptor1-receptor2” model has been synthesized. Due to the unusually high solubility in water, the novel compound proved to be a selective PET-based probe for the determination of pHs in aqueous solutions and rapid detection of water content in organic solvents. Based on the pH dependence of the probe and its high water solubility, the INH logic gate was achieved using NaOH and water as chemical inputs, where NaOH is the disabler and the water is an enabler. In addition, the probe showed effective fluorescence “off-on” reversibility on glass support after exposure to acid and base vapors, which defines it as a promising platform for rapid detection of acid/base vapors in the solid-state, thus extending the molecular sensing concept from solution to the solid support.
Collapse
Affiliation(s)
- Nikolai I. Georgiev
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| | | | | | - Vladimir B. Bojinov
- Correspondence: (N.I.G.); (V.B.B.); Tel.: +35-(92)-8163207 (N.I.G.); +35-(92)-8163206 (V.B.B.)
| |
Collapse
|
8
|
Shen Q, Kong X, Li K, Wan T, Dong J, Wu H. A highly sensitive fluorescent 1,8‐naphthalimide Schiff base probe for detection of Hg
2+. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qinqin Shen
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Xiaoxia Kong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Kaiyi Li
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Tiantian Wan
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Jianping Dong
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| | - Huilu Wu
- School of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou People's Republic of China
| |
Collapse
|
9
|
Low Molecular Weight Probe for Selective Sensing of PH and Cu 2+ Working as Three INHIBIT Based Digital Comparator. J Fluoresc 2022; 32:405-417. [PMID: 34988841 DOI: 10.1007/s10895-021-02856-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
A novel simple molecular chemosensor 2 was synthesized and examined for pH, cations and anions detection. At pH values higher than 10, probe 2 switches on a green emission where the excited state intramolecular proton transfer (ESIPT) is ceased. Also, the probe absorption spectrum shows a clear pH dependence, and the probe aqueous solution (ethanol/water = 1:2, borate buffer) responds selectively and sensitively through its fluorescence spectrum to the presence of Cu2+. Job's plot gave a 2:1 stoichiometry of Probe-2/Cu2+ complex, which responds to the presence of S2- and H2PO4- in aqueous solution (ethanol/water = 1:2, borate buffer) by its absorption and fluorescence spectra. In addition, probe 2 mimics a digital comparator based on three INHIBIT logic gates by different outputs using HO- and H+ as inputs. Moreover, probe 2 also executes AND and NOT TRANSFER logic gates using Cu2+ and S2- as inputs.
Collapse
|
10
|
Georgiev NI, Bryaskova RG, Ismail SR, Philipova ND, Uzunova VP, Bakov VV, Tzoneva RD, Bojinov VB. Aggregation induced emission in 1,8-naphthalimide embedded nanomicellar architecture as a platform for fluorescent ratiometric pH-probe with biomedical applications. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|