1
|
Singh R, Tiwari MK, Singh RK. Inhibition Conversion of Aspirin into Salicylic Acid in Presence of Glycine. J Fluoresc 2025; 35:2235-2242. [PMID: 38530560 DOI: 10.1007/s10895-024-03675-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Aspirin (AS) is a common drug having anti-pyretic and anti-inflammatory properties which is widely used in diverse medical conditions. The intake of AS may cause adverse effects such as gastrointestinal ulcer, tinnitus and Reye's syndrome. The adverse effects of AS arise due to conversion of AS into salicylic acid (SAL). Glycine (Gly) is a simplest non essential amino acid having anti-oxidative and anti-inflammatory effects. It also reduces the risk of obesity, hypertension, and diabetes mellitus. AS with Gly is well accepted form of the drug for the treatment of rheumatic conditions in comparisons to the bare AS. In the present work using UV-Visible absorption, fluorescence and DFT/ TD-DFT techniques confirmed that in presence of Gly inhibited the conversion of AS into SAL effectively.
Collapse
Affiliation(s)
- Ranjana Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
- Government Polytechnic Rajgrah, Mirzapur, 231001, India.
| | - Manish K Tiwari
- Department of Physics, Mahatama Gandhi Kashi Vidya Peeth, Varanasi, 221002, India
| | - Ranjan K Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Qin M, Khan IM, Ding N, Qi S, Dong X, Zhang Y, Wang Z. Aptamer-modified paper-based analytical devices for the detection of food hazards: Emerging applications and future perspective. Biotechnol Adv 2024; 73:108368. [PMID: 38692442 DOI: 10.1016/j.biotechadv.2024.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Food analysis plays a critical role in assessing human health risks and monitoring food quality and safety. Currently, there is a pressing need for a reliable, portable, and quick recognition element for point-of-care testing (POCT) to better serve the demands of on-site food analysis. Aptamer-modified paper-based analytical devices (Apt-PADs) have excellent characteristics of high portability, high sensitivity, high specificity, and on-site detection, which have been widely used and concerned in the field of food safety. The article reviews the basic components and working principles of Apt-PADs, and introduces their representative applications detecting food hazards. Finally, the advantages, challenges, and future directions of Apt-PADs-based sensing performance are discussed, to provide new directions and insights for researchers to select appropriate Apt-PADs according to specific applications.
Collapse
Affiliation(s)
- Mingwei Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, PR China
| | - Ning Ding
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Li W, Liu F, He Y, Song G. A ratiometric fluorescent sensor based on S-doped BCNO quantum dots and Au nanoclusters combined with 3D-printing portable device for the detection of malachite green. Mikrochim Acta 2024; 191:394. [PMID: 38877187 DOI: 10.1007/s00604-024-06465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Sulfur-doped BCNO quantum dots (S-BCNO QDs) emitting green fluorescence were prepared by elemental doping method. The ratiometric fluorescence probe with dual emissions was simply established by mixed S-BCNO QDs with gold nanoclusters (GSH-Au NCs). Because the emission spectrum of Au NCs (donor) at 615 nm overlapped well with the ultraviolet absorption of malachite green (MG), fluorescence resonance energy transfer (FRET) can be achieved. When the concentration of MG increased, the fluorescence intensity (F495) of S-BCNO QDs decreased slowly, while the fluorescence intensity (F615) of Au NCs decreased sharply. The fluorescence intensity ratio of F615/F495 decreased with the increase of MG. By plotting the F615/F495 values against MG concentration, a sensitive and rapid detection of MG was possible with a wide detection range (0.1-50 µM) and a low detection limit of 10 nM. Due to the accompanying fluorescence color change from pink to blue-green, it can be used for visual detection. A three dimensional-printing device utilizing digital image colorimetry to capture color changes through the built-in camera, enables quantitative detection of MG with a good linearity between the values of red/green ratio and MG concentrations at the range 1-50 µM. This sensing platform had a range of advantages, including high cost-effectiveness, portability, ease of operation, and high sensitivity. Furthermore, the sensing platform was successfully applied to the detection of MG in real water sample and fish samples, thereby verifying the reliability and effectiveness of this sensing platform in water quality monitoring and food safety.
Collapse
Affiliation(s)
- Wenhao Li
- Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory for Precision Manufacturing of Small Molecular Active Pharmaceutical Ingredients, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Fang Liu
- Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory for Precision Manufacturing of Small Molecular Active Pharmaceutical Ingredients, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Yu He
- Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory for Precision Manufacturing of Small Molecular Active Pharmaceutical Ingredients, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China.
| | - Gongwu Song
- Ministry of Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory for Precision Manufacturing of Small Molecular Active Pharmaceutical Ingredients, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
4
|
Nayak M, Patel CB, Mishra A, Singh R, Singh RK. Unveiling the Influence of Glutathione in Suppressing the Conversion of Aspirin to Salicylic Acid: A Fluorescence and DFT Study. J Fluoresc 2024; 34:1441-1451. [PMID: 38530561 DOI: 10.1007/s10895-024-03665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Aspirin is a commonly used nonsteroidal anti-inflammatory drug, associated with many adverse effects. The adverse effects of aspirin such as tinnitus, Reye's syndrome and gastrointestinal bleeding are caused due to conversion of aspirin into its active metabolite salicylic acid after oral intake. Glutathione is a naturally occurring antioxidant produced by the liver and nerve cells in the central nervous system. It helps to metabolize toxins, break down free radicles, and support immune function. This study aims to investigate and explore the possibility of inhibiting aspirin to salicylic acid conversion in presence of glutathione at a molecular level using spectroscopic techniques such as UV-Visible absorption, time-Resolved and time-dependent fluorescence and theoretical DFT/ TD-DFT calculations. The results of steady state fluorescence spectroscopy and time-dependent fluorescence indicated that the aspirin to salicylic acid conversion is considerably inhibited in presence of glutathione. Further, the results presented here might have significant clinical implications for individuals with variations in glutathione level.
Collapse
Affiliation(s)
- Monalisha Nayak
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chandan Bhai Patel
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anurag Mishra
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ranjana Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
- Government Polytecnic Rajgrah, Mirzapur, Bathua, 231001, India.
| | - Ranjan K Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Song J, Zhao B, Wang Y, Liu X, Cheng Z, Zhang X, Feng X. A portable smartphone-assisted Tb-MOF-based agar-slice probe for the rapid and on-site fluorescence assay of malachite green in aquatic products. Food Chem 2024; 437:137883. [PMID: 37918152 DOI: 10.1016/j.foodchem.2023.137883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
In this study, a new Tb-MOF fluorescence probe was developed for the detection of malachite green (MG) in real aquatic products. Fluorescence sensing experiments revealed that MG can effectively quench the green fluorescence of Tb-MOF suspensions, and the detection process exhibits the advantages of high sensitivity, a wide linear range (0-80 μM), a low detection limit (10.8 nM) and a rapid response time. Selective detection of MG is achieved primarily through fluorescence resonance energy transfer (FRET) and photoinduced electron transfer (PET) mechanisms. Furthermore, a smartphone-assisted Tb-MOF-based agar slice detection platform was constructed for the visual and quantitative detection of MG. Additionally, the on-site detection of MG in crucian and shrimp samples was accomplished with high recoveries (99.8 %-107.99 %) and low relative standard deviations (RSD < 2.2 %). This developed detection platform introduced a low-cost, portable and user-friendly approach for MG detection.
Collapse
Affiliation(s)
- Junya Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Beibei Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Yiren Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471022, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.
| | - Zheng Cheng
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China.
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
6
|
Shahid K, Alshareef M, Ali M, Yousaf MI, Alsowayigh MM, Khan IA. Direct Growth of Nitrogen-Doped Carbon Quantum Dots on Co 9S 8 Passivated on Cotton Fabric as an Efficient Photoelectrode for Water Treatment. ACS OMEGA 2023; 8:41064-41076. [PMID: 37970001 PMCID: PMC10633820 DOI: 10.1021/acsomega.3c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
Heterogeneous growth of photocatalysts on different porous substrates is a solution to avoid secondary pollution caused by composite photocatalysts themselves. However, the heterogeneous growth of composite photocatalysts with nitrogen-doped carbon quantum dots (NCQDs) inclusions-introduced during synthesis-impedes the direct growth on the substrate. To overcome this problem, NCQDs were grown on a Co9S8 (NCQDs-G@Co9S8) layer, decorated on cotton fabric. This optimal coupling mode of NCQDs and Co9S8 showed 54% degradation, compared to 33% dye degradation via NCQDs-doped Co9S8 (NCQDs-D@Co9S8). The change in the crystal structure and its lower loading on fabric results in significantly lower performance of NCQDs-D@Co9S8. Even with the combination of both surface growth and doping (NCQDs-DG@Co9S8), the performance was still limited to 42%. In addition, the optimum growth concentration of NCQDs on Co9S8 was observed for 7.5 w/w %, resulting in 92% photocatalytic activity (PCA) in 80 min. Comparing different surface states formed in NCQDs using different solvents, water-based surface states (oxygen-rich surface) are most suitable for the dye degradation. NCQDs-G@Co9S8 also offers 67% Cr-VI reduction to Cr-III, showing its suitability for both inorganic and organic compounds. Better electrode performance was related to suitable charge separation of the composite, where -OH groups mainly contribute in the photocatalytic dye degradation..
Collapse
Affiliation(s)
- Kinza Shahid
- Department
of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Mubark Alshareef
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Mumtaz Ali
- Department
of Textile Engineering, National Textile
University, Faisalabad 37610, Pakistan
| | - Muhammad Imran Yousaf
- Department
of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Marwah M. Alsowayigh
- Chemistry
Department, College of Science, King Faisal
University, P.O. 380, Al-Ahsa 31982, Kingdom
of Saudia Arabia
| | - Imtiaz Afzal Khan
- Interdisciplinary
Research Center for Membranes and Water Security, King Fahad University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
7
|
Yue X, Fu L, Li Y, Xu S, Lin X, Bai Y. Lanthanide bimetallic MOF-based fluorescent sensor for sensitive and visual detection of sulfamerazine and malachite. Food Chem 2023; 410:135390. [PMID: 36623454 DOI: 10.1016/j.foodchem.2023.135390] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
A lanthanide terbium/europium metal-organic framework (Tb0.6Eu0.4-MOF) was prepared by one-step solvothermal method at room temperature. A series of characterizations including scanning electron microscopy, powder X-ray diffraction spectra, Fourier transform infrared spectra and X-ray photoelectron spectroscopy were carried out to clarify the physical characteristics of the synthesized material. The data clarified that the prepared Tb0.6Eu0.4-MOF possessed rod-like morphology with a width of 1-2 μm, and had good crystal structure, good stability, response speed and excitation-independent emission feature. The bunchy Tb0.6Eu0.4-MOF was then used to construct fluorescent sensors for rapid identification of malachite green and sulfamerazine. It was revealed that the detection mechanism was inner filter effect. The effects of different parameters such as excitation wavelength and incubation times were investigated on the fluorescence analysis performance. The data clarified that the optimal excitation wavelength and incubation time was 240 nm and 3 min, respectively. The detection platform exhibited the high sensitivity and selectivity toward malachite green in the linear range of 2-180 μM and determined limit of detection was 1.12 μM. Besides, the proposed sensor allowed sensitive detection of sulfamerazine in the linear range of 2-140 μM with a low detection limit of 0.1 μM. Meaningfully, a smartphone application was designed to assist the proposed sensor to realize visual, intelligent and rapid detection of malachite green and sulfamerazine. Furthermore, the practical application of the proposed sensor has been also verified by high performance liquid chromatography, showing good accuracy, sensitivity and satisfactory recoveries. The results suggested that the Tb0.6Eu0.4-MOF-based ratiometric fluorescent sensor had the potential to become a promising technique for rapid detection of malachite green or sulfamerazine with smartphone application. Therefore, the prepared Tb0.6Eu0.4-MOF is one kind of efficient and cost-effective potential materials for developing fluorescent sensor for rapid, sensitive and selective detection of sulfamerazine and malachite.
Collapse
Affiliation(s)
- Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Long Fu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yan Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Sheng Xu
- College of Computer and Communication Engineering, Zhengzhou University of Light Industry, 450001 Zhengzhou, Henan Province, China
| | - Xin Lin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Carbon quantum dots derived from fish scales as fluorescence sensors for detection of malachite green. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
9
|
Yang G, Zhang J, Gu L, Tang Y, Zhang X, Huang X, Shen X, Zhai W, Fodjo EK, Kong C. Ratiometric Fluorescence Immunoassay Based on Carbon Quantum Dots for Sensitive Detection of Malachite Green in Fish. BIOSENSORS 2022; 13:38. [PMID: 36671873 PMCID: PMC9855656 DOI: 10.3390/bios13010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Malachite green (MG) is a synthetic poisonous organic compound that has been banned in many countries as a veterinary drug for aquaculture. An efficient, fast and sensitive method is urgently needed for monitoring the illegal use of malachite green (MG) in aquaculture. In this study, a novel ratiometric fluorescence immunoassay was established. Nitrogen-doped carbon quantum dots were used as ratiometric fluorescent probes with a fluorescence peak at 450 nm. Horseradish peroxidase was employed to convert o-phenylenediamine to 2,3-diaminophenazine, with a new fluorescence peak at 580 nm and a strong absorption at 420 nm. The inner filter effect between N-CQD fluorescence and DAP absorption was identified. It allows for the ratiometric detection of MG using a fluorescent immunoassay. The results demonstrated a linear ratiometric fluorescence response for MG between 0.1 and 12.8 ng·mL-1. The limit of detection of this method was verified to be 0.097 μg·kg-1 with recoveries ranging from 81.88 to 108%, and the relative standard deviations were below 3%. Furthermore, this method exhibited acceptable consistency with the LC-MS/MS results when applied for MG screening in real samples. These results demonstrated a promising application of this novel ratiometric fluorescence immunoassay for MG screening with the merits of rapid detection, simple sample preparation, and stable signal readout. It can be an alternative to other traditional methods if there are difficulties in the availability of expensive instruments, and achieve comparable results or even more sensitivity than other reported methods.
Collapse
Affiliation(s)
- Guangxin Yang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200090, China
| | - Jingru Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200090, China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200090, China
| | - Yunyu Tang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Xuan Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Xuanyun Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Xiaosheng Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Essy Kouadio Fodjo
- Physical Chemistry Laboratory, UFR SSMT, Université Felix Houphouet Boigny, Abidjan 22 BP 582, Côte d’Ivoire
| | - Cong Kong
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
10
|
Ma ZB, Zhang Y, Ren XH, He XW, Li WY, Zhang YK. Dual-reverse-signal ratiometric fluorescence method for malachite green detection based on multi-mechanism synergistic effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121196. [PMID: 35390755 DOI: 10.1016/j.saa.2022.121196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The proposition of ratiometric detection mode has demonstrated great superiority in improving analysis accuracy by forming self-calibration. Herein, the novel dual-reverse-signal ratiometric fluorescence detection for malachite green (MG) was first achieved based on synergistic effect of fluorescence resonance energy transfer (FRET) and inner filter effect (IFE). The ratiometric fluorescence probe (B-RCDs) was self-assembled via electrostatic attraction between blue-emission carbon dots (BCDs) and red-emission carbon dots (RCDs), followed with FRET effect from BCDs to RCDs and exhibited dual-emission at 450 nm and 627 nm. In the presence of MG, the IFE effect between MG and RCDs quenched the fluorescence at 627 nm and restored the fluorescence at 450 nm, sending out two reverse signals along with an obvious color change from pink to purple (302 nm UV lamp). This ratiometric method not only simplified the preparation process, but also improved the detection sensitivity, showing a low limit of detection (LOD) of 41.8 nM, which exhibited superiority than that of single-signal RCDs (157.3 nM). This method held a rapid response of 10 min and represented satisfactory recoveries (99.14%-109.08%) in real water samples, revealing it was a promising candidate in the fast, sensitive and practical detection of MG. Moreover, the design of synergistic effect supplied a new perspective for the development of ratiometric sensing in the future.
Collapse
Affiliation(s)
- Zi-Bo Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing-Hui Ren
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu-Kui Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
11
|
Cheng S, Wang X, Yan X, Xiao Y, Zhang Y. Simple synthesis of green luminescent N-doped carbon dots for malachite green determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2616-2622. [PMID: 35734888 DOI: 10.1039/d2ay00682k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, novel N-doped carbon dots (N-CDs) were prepared from fuchsin basic and ethylenediamine tetraacetic acid-disodium salt (EDTA-2Na). The N-CDs were characterized by a series of techniques and it was found that the average particle size was 2.75 nm, and the surface had functional groups such as -NH2 and -COOH. Interestingly, N-CDs exhibited a fast and sensitive response to malachite green (MG), which may be due to the inner filter effect (IFE). A method for the detection of MG in water samples from Jinyang Lake was developed using N-CDs, with a limit of detection (LOD) as low as 27.28 nM. Furthermore, N-CDs were utilized in the biological imaging of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sijie Cheng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Xuerong Yan
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yanteng Xiao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
12
|
Yue X, Li Y, Xu S, Li J, Li M, Jiang L, Jie M, Bai Y. A portable smartphone-assisted ratiometric fluorescence sensor for intelligent and visual detection of malachite green. Food Chem 2022; 371:131164. [PMID: 34600369 DOI: 10.1016/j.foodchem.2021.131164] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Developing intelligent, sensitive, and visual methods for rapidly detecting veterinary drug residues is essential for ensuring food quality and safety. A portable smartphone-assisted ratiometric fluorescent sensor was successfully designed using fluorescent Al-MOF nanosheet and rhodamine B (RhB) as fluorescent probes to adjust to the requirement of malachite green (MG) detection. The developed ratiometric fluorescent sensor allowed sensitive and selective detection of MG with good linear relationships in a wide range of 0.5-200 μg/mL. The Quantitative linearrange is 5.3 μg/mL to 200 μg/mL. The limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 1.6 μg/mL and 5.3 μg/mL respectively. The practicability of the proposed method was verified using high performance liquid chromatography (HPLC) in spiked fish tissues with satisfying recoveries and RSD. Moreover, portable smartphone-assisted fluorescent test papers were fabricated for the intelligent detection of MG. This integration of smartphones and fluorescent test papers was economical and saved time, providing an alternative strategy for the qualitative discernment and semi-quantitative analysis of MG on-site.
Collapse
Affiliation(s)
- Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China
| | - Yan Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China
| | - Sheng Xu
- College of Computer and Communication Engineering, Zhengzhou University of Light Industry, 450001 Zhengzhou, Henan Province, China
| | - Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China
| | - Min Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China
| | - Liying Jiang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mingsha Jie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Li Z, Shen T, Gu J, Chattha SA. PVP–gold–copper nanocluster based NIR fluorescence probe for sensitive detection of malachite green. NEW J CHEM 2022. [DOI: 10.1039/d1nj04943g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel NIR fluorescent probe based on PVP–Au/CuNCs has been developed, exhibiting good selectivity and stability for detecting malachite green (MG).
Collapse
Affiliation(s)
- Zhiying Li
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Tian Shen
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Jianxia Gu
- Department of Chemistry, Xinzhou Normal University, Xinzhou 034000, P. R. China
| | - Sadaqat Ali Chattha
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China
- Department of Leather & Fibre Technology, University of Veterinary & Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
14
|
Hu Q, Cui Y, Zhang L, Qian M, Xiao L, Yang M, Yang ZQ, Rao S, Gong X, Han J. An ultrasensitive analytical strategy for malachite green determination in fish samples based on bright orange-emissive carbon dots. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|