1
|
Ichiba K, Okazaki K, Takebuchi Y, Kato T, Nakauchi D, Kawaguchi N, Yanagida T. X-ray-Induced Scintillation Properties of Nd-Doped Bi 4Si 3O 12 Crystals in Visible and Near-Infrared Regions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8784. [PMID: 36556590 PMCID: PMC9782204 DOI: 10.3390/ma15248784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Undoped, 0.5, 1.0, and 2.0% Nd-doped Bi4Si3O12 (BSO) crystals were synthesized by the floating zone method. Regarding photoluminescence (PL) properties, all samples had emission peaks due to the 6p-6s transitions of Bi3+ ions. In addition, the Nd-doped samples had emission peaks due to the 4f-4f transitions of Nd3+ ions as well. The PL quantum yield of the 0.5, 1.0, and 2.0% Nd-doped samples in the near-infrared range were 67.9, 73.0, and 56.6%, respectively. Regarding X-ray-induced scintillation properties, all samples showed emission properties similar to PL. Afterglow levels at 20 ms after X-ray irradiation of the undoped, 0.5, 1.0, and 2.0% Nd-doped samples were 192.3, 205.9, 228.2, and 315.4 ppm, respectively. Dose rate response functions had good linearity from 0.006 to 60 Gy/h for the 1.0% Nd-doped BSO sample and from 0.03 to 60 Gy/h for the other samples.
Collapse
|
2
|
Lv Z, Jin L, Gao W, Cao Y, Zhang H, Xue D, Yin N, Zhang T, Wang Y, Zhang H. Novel YOF-Based Theranostic Agents with a Cascade Effect for NIR-II Fluorescence Imaging and Synergistic Starvation/Photodynamic Therapy of Orthotopic Gliomas. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30523-30532. [PMID: 35775188 DOI: 10.1021/acsami.2c05354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accurate diagnosis and highly effective treatment of glioblastoma are still challenges in clinic. Near-infrared (NIR) light triggered fluorescence imaging and photodynamic therapy (PDT) showed the potential for theranostics of glioblastoma, but the presence of blood-brain barrier (BBB) and hypoxia limited treatment effect. Herein, the novel theranostic nanoagents with YOF:Nd3+ as core, MnO2 as shell, and further loading photosensitizer (indocyanine green, ICG) and glucose oxidase (GOx) were successfully constructed, and further modified with lactoferrin to endow them with BBB penetration and target abilities (YOF:Nd3+@MnO2-ICG-GOx-LF, YMIGL). The YOF:Nd3+ core with good fluorescence performances makes YMIGL act as promising probes for fluorescence imaging in the second biowindow (NIR-II FL). The combination of GOx and MnO2 shell significantly increased the O2 generation from the cascade reactions and consumed glucose, improving the treatment effect of PDT and achieving starvation treatment (ST). These theranostic nanoagents exhibit a highly efficient inhibition effect on orthotopic gliomas by cascade reactions, which improved PDT and ST.
Collapse
Affiliation(s)
- Zhijia Lv
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P. R. China
| | - Longhai Jin
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Weihao Gao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130041, P. R. China
| | - Hao Zhang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Dongzhi Xue
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Na Yin
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Tianqi Zhang
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yinghui Wang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hongjie Zhang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|