1
|
Murugan M, Saranya E, Ramya M. DNAzyme-based colorimetric biosensor for rapid detection of Shigella flexneri. Sci Rep 2025; 15:14942. [PMID: 40301398 PMCID: PMC12041453 DOI: 10.1038/s41598-025-94494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/13/2025] [Indexed: 05/01/2025] Open
Abstract
Shigella flexneri, a formidable gram-negative bacterium, that triggers the most contagious form of shigellosis through bloody diarrhea, presenting a significant threat. As a severe foodborne pathogen, it underscores the need for intensified research into more effective prevention strategies and heightened public health awareness. The traditional methods used to detect S. flexneri are time-consuming and inconvenient. As a result, there is a need for accurate and rapid diagnostics in food and water samples. The experimental methods involved modifying S. flexneri-specific HGD-aptamer and employing single-walled carbon nanotubes to develop a colorimetric detection assay exploiting DNAzyme. The HGD-aptamer-SWCNT complex binds specifically to S. flexneri cells, resulting in a detectable colorimetric response in a test sample involving enzymatic reactions. The assay's efficacy was validated through sensitivity and specificity evaluations, which demonstrated a detection limit of 51 CFU/mL and selective detection of the target with no signal in different bacterial environments. Comparative analysis with PCR-based methods confirmed the assay's performance, highlighting its potential as a rapid, cost-effective, and user-friendly diagnostic tool. This study introduces an innovative approach to identifying S. flexneri, which has the potential to improve food safety, environmental monitoring, and public health.
Collapse
Affiliation(s)
- Manikandan Murugan
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India
| | - Elangovan Saranya
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, College of Engineering and Technology, Kattankulathur, Chengalpattu, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
2
|
Nourry J, Chevalier P, Laurenceau E, Cattoen X, Bertrand X, Peres B, Oukacine F, Peyrin E, Choisnard L. Whole-cell aptamer-based techniques for rapid bacterial detection: Alternatives to traditional methods. J Pharm Biomed Anal 2025; 255:116661. [PMID: 39793371 DOI: 10.1016/j.jpba.2025.116661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Controlling the spread of bacterial infectious diseases is a major public health issue, particularly in view of the pandemic of bacterial resistance to antibiotics. In this context, the detection and identification of pathogenic bacteria is a prerequisite for the implementation of control measures. Current reference methods are mainly based on culture methods, which generate a delay in obtaining a result and requires equipment. Consequently, focusing on the detection of the whole bacterium represents a very attractive alternative, since no culture is required. Several techniques have already been deployed to identify whole-cell bacteria. In recent decades, growing interest in nucleic acid aptamers has emerged as a viable alternative to antibodies as recognition elements, offering preferable stability, cost-efficiency, good specificity and affinity. This review explores current alternative methods for the detection of whole-cell bacteria, with particular emphasis on aptamer-based assays. These assays have shown promising results in various transduction mechanisms, including optical, electrochemical, and mechanical approaches, enhancing their versatility in different diagnostic platforms. The integration of aptamers in these detection methods offers rapid, sensitive, versatile and portable solutions for pathogen identification, positioning them as valuable tools in the fight against bacterial infections.
Collapse
Affiliation(s)
- Juliette Nourry
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Pauline Chevalier
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Emmanuelle Laurenceau
- University Lyon, University Claude Bernard Lyon 1, INL UMR5270, Ecole Centrale Lyon, CNRS, INSA Lyon, CPE Lyon, Ecully F-69130, France
| | - Xavier Cattoen
- University Grenoble Alpes, Grenoble INP, Institut Néel, CNRS, Grenoble F-38000, France
| | - Xavier Bertrand
- University Bourgogne Franche-Comté, Chrono-environnement, UMR 6249, CNRS, France
| | - Basile Peres
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Farid Oukacine
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France
| | - Eric Peyrin
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France.
| | - Luc Choisnard
- University Grenoble Alpes, DPM UMR 5063, CNRS, Grenoble F-38041, France.
| |
Collapse
|
3
|
Singh KKB, Salleh MZ, Ahmed N, Yean Yean C, Ismail A. Identification and analysis of immunoreactive proteins of Shigella flexneri in human sera and stool specimens. PeerJ 2024; 12:e17498. [PMID: 38827305 PMCID: PMC11141557 DOI: 10.7717/peerj.17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Background The method currently available to diagnose shigellosis is insensitive and has many limitations. Thus, this study was designed to identify specific antigenic protein(s) among the cell surface associated proteins (SAPs) of Shigella that would be valuable in the development of an alternative diagnostic assay for shigellosis, particularly one that could be run using a stool sample rather than serum. Methods The SAPs of clinical isolates of S. dysenteriae, S. boydii, Shigella flexneri, and S. sonnei were extracted from an overnight culture grown at 37 °C using acidified-glycine extraction methods. Protein profiles were observed by SDS-PAGE. To determine if antibodies specific to certain Shigella SAPs were present in both sera and stool suspensions, Western blot analysis was used to detect the presence of IgA, IgG, and IgM. Results Immunoblot analysis revealed that sera from patients infected with S. flexneri recognized 31 proteins. These SAP antigens are recognized by the host humoral response during Shigella infection. Specific antibodies against these antigens were also observed in intestinal secretions of shigellosis patients. Of these 31 S. flexneri proteins, the 35 kDa protein specifically reacted against IgA present in patients' stool suspensions. Further study illustrated the immunoreactivity of this protein in S. dysenteriae, S. boydii, and S. sonnei. This is the first report that demonstrates the presence of immunoreactive Shigella SAPs in stool suspensions. The SAPSs could be very useful in developing a simple and rapid serodiagnostic assay for shigellosis directly from stool specimens.
Collapse
Affiliation(s)
- Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), UiTM Puncak Alam Campus, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Asma Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
4
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. A detection method for Prorocentrum minimum by an aptamer-gold nanoparticles based colorimetric assay. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131043. [PMID: 36827721 DOI: 10.1016/j.jhazmat.2023.131043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Here, to give early waring for harmful algal blooms caused by Prorocentrum minimum, we reported a simple and rapid colorimetric assay that is named aptamer-gold nanoparticles (GNPs) based colorimetric assay (AGBCA). The GNPs maintain a dispersed state and have a strong characteristic absorption peak at 520 nm. With the addition of NaCl, the stability of the solution will be destroyed and the dispersed GNPs will aggregate. Therefore, the characteristic absorption peak of the GNPs solution will change from 520 nm to 670 nm. Aptamers can be adsorbed on the surface of GNPs, effectively preventing the aggregation of GNPs. In the presence of P. minimum, aptamers will specifically bind to P. minimum, causing the dissociation of the aptamers from GNPs. Consequently, the GNPs will aggregate in the NaCl solution, corresponding to a new absorption peak at 670 nm. A linear relationship between the absorbance ratio variation (ΔA670/A520) and the P. minimum concentration was observed in the concentration range of 1 × 102 - 1 × 107 cells mL-1, with a low detection limit of 8 cells mL-1. The developed AGBCA is characterized by simplicity, strong specificity, and high sensitivity and is thus promising for the quantitative detection of P. minimum in natural samples.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Yu Duan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinju Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| |
Collapse
|
5
|
Aptasensor for the Detection of Moraxella catarrhalis Adhesin UspA2. Bioengineering (Basel) 2023; 10:bioengineering10020178. [PMID: 36829672 PMCID: PMC9951875 DOI: 10.3390/bioengineering10020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Innovative point-of-care (PoC) diagnostic platforms are desirable to surpass the deficiencies of conventional laboratory diagnostic methods for bacterial infections and to tackle the growing antimicrobial resistance crisis. In this study, a workflow was implemented, comprising the identification of new aptamers with high affinity for the ubiquitous surface protein A2 (UspA2) of the bacterial pathogen Moraxella catarrhalis and the development of an electrochemical biosensor functionalized with the best-performing aptamer as a bioreceptor to detect UspA2. After cell-systematic evolution of ligands by exponential enrichment (cell-SELEX) was performed, next-generation sequencing was used to sequence the final aptamer pool. The most frequent aptamer sequences were further evaluated using bioinformatic tools. The two most promising aptamer candidates, Apt1 and Apt1_RC (Apt1 reverse complement), had Kd values of 214.4 and 3.4 nM, respectively. Finally, a simple and label-free electrochemical biosensor was functionalized with Apt1_RC. The aptasensor surface modifications were confirmed by impedance spectroscopy and cyclic voltammetry. The ability to detect UspA2 was evaluated by square wave voltammetry, exhibiting a linear detection range of 4.0 × 104-7.0 × 107 CFU mL-1, a square correlation coefficient superior to 0.99 and a limit of detection of 4.0 × 104 CFU mL-1 at pH 5.0. The workflow described has the potential to be part of a sensitive PoC diagnostic platform to detect and quantify M. catarrhalis from biological samples.
Collapse
|
6
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. In vitro selection and characterization of a DNA aptamer targeted to Prorocentrum minimum-A common harmful algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154771. [PMID: 35339548 DOI: 10.1016/j.scitotenv.2022.154771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Prorocentrum minimum is a common diarrhetic shellfish toxins-producing marine microalga that may seriously endanger marine resources and cause great economic losses. The development of a novel rapid detection technique is of great importance for the prevention and control of the damage caused by P. minimum. In this study, the aptamer against P. minimum was for the first time generated from an artificially synthesized single-stranded DNA library by systematic evolution of ligand by exponential enrichment (SELEX), using P. minimum and P. minimum-related species, including Prorocentrum donghaiense, Prorocentrum lima and Prorocentrum micans as target and counter-screening species, respectively. The aptamer library was successfully obtained at the end of 18 rounds of SELEX-screening by continuously monitoring the binding ratio of the resultant ssDNA from each round. Three sequences (Apt 1, Apt 2 and Apt 3) with the highest frequency in the aptamer library resulted from high-throughput sequencing were first selected as candidate aptamers. The secondary structure of these sequences was predicted and analyzed. In addition, the specificity and affinity of these candidate aptamers were determined by flow cytometry analysis. The results indicated that these aptamers had high specificity and affinity, with a KD of (224.6 ± 8.8) nM (Apt 1), (286.6 ± 13.9) nM (Apt 2) and (388.5 ± 44.6) nM (Apt 3), respectively. Apt 1 was therefore chosen as the best aptamer against P. minimum. Finally, the fluorescence microscopic examination further confirmed that Apt 1 can well bind to P. minimum. In summary, Apt 1 may be promising for being used as a novel molecular recognition element for P. minimum.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jinju Ma
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| |
Collapse
|
7
|
Banu K, Mondal B, Rai B, Monica N, Hanumegowda R. Prospects for the application of aptamer based assay platforms in pathogen detection. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Liu M, Yue F, Kong Q, Liu Z, Guo Y, Sun X. Aptamers against Pathogenic Bacteria: Selection Strategies and Apta-assay/Aptasensor Application for Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5477-5498. [PMID: 35471004 DOI: 10.1021/acs.jafc.2c01547] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathogenic bacteria are primarily kinds of detrimental agents that cause mankind illness via contaminated food with traits of multiple types, universality, and low content. In view of the detection demands for rapidity, aptamer recognition factors emerged as a substitution for antibodies, which are short single strands of nucleic acid selected via in vitro. They display certain superiorities over antibodies, such as preferable stability, liable modification, and cost-efficiency. Taking advantage of the situation, numerous aptamers against pathogenic bacteria have been successfully selected and applied, yet there are still restrictions on commercial availability. In this review, the strategies/approaches to key sections in pathogen aptamers SELEX and post-SELEX are summarized and sorted out. Recently, optical, electrochemical, and piezoelectric aptamer-based assays or sensors dedicated to pathogen detection have been critically reviewed. Ultimately, the existing challenges and future trends in this field are proposed to further promote development prospects.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Qianqian Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, 266 Xincun Xilu, Zibo, Shandong 255049, People's Republic of China
| |
Collapse
|