1
|
Jain A, De S, Mukherjee D, Haribabu J, Santibanez JF, Barman P. A substituent-modified new salicylaldehyde-diphenyl-azine based AIEgen: A promising skeleton for copper ion sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124824. [PMID: 39029203 DOI: 10.1016/j.saa.2024.124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
In this study, we have reported a novel 4-bromo-salicylaldehyde-diphenyl-azine (B-1), a new member of salicylaldehyde-diphenyl-azine (SDPA) family known for its excellent sensing properties. In contrast to the previously reported AIEgens, we found that the bromo-substitution at the 4th position of the salicylaldehyde moiety blue-shifted the emission by 10 and 15 nm as compared to the unsubstituted (Tong et.al 2017) and Bromo at the 5th position (Jain et.al 2023) respectively. Moreover, B-1 crystallizes instantly as the cooling process starts, which was not observed in the previously reported scaffolds. The sensing investigation again demonstrated the precise and ultrasensitive behavior of B-1 for copper ions. B-1 has a very low LOD value i.e. 29.2 x 10-8 M with a high association constant and binds with copper ion in 2:1 mode. This time we also analyzed the practical applicability in the solid phase using cotton swabs and performed the real-time estimation of copper ions in water and biological samples like urine and blood serum. The excellent percentage recovery and the RSD value suggest the precision of the experiments. Further, we also perform the sensing in living cancer HeLa cells. Altogether, we found that the SDPA skeleton is precise and ultrasensitive for copper ions and versatile which can be used variously to detect copper ions in the real world. This research will surely help in developing new specific skeleton-based AIEgens with desirable emission properties and precise applications in the future.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India
| | - Soumik De
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India
| | - Debanggana Mukherjee
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile; Chennai Institute of Technology (CIT), Chennai 600069, India
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11029, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago 8370993, Chile
| | - Pranjit Barman
- Department of Chemistry, National Institute of Technology, Silchar, Assam 788010, India.
| |
Collapse
|
2
|
Liu L, Zhou T, Li Y, Li T. A Novel Rhodamine B Derivative as a "Turn-on" Fluorescent Sensor for Cu 2+ with High Selectivity and Sensitivity. J Fluoresc 2024:10.1007/s10895-024-03977-2. [PMID: 39356390 DOI: 10.1007/s10895-024-03977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
The number of "turn-on" fluorescent probes for Cu2+ is relatively limited, and interference from other metal cations presents a significant challenge for these sensors. In this study, we synthesized and characterized a rhodamine B-based sensor, designated as RBHP, using 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and rhodamine B hydrazide. Selectivity, sensitivity, solvent effects, water content, and pH of RBHP in relation to Cu²⁺ were conducted. RBHP exhibited an exceptionally low fluorescence background signal in acetonitrile and demonstrated a "turn-on" fluorescent response to Cu²⁺. The PMBP-based acylhydrazone moiety and acetonitrile as the detection solvent are crucial for the selective detection. RBHP shows potential as a highly selective and sensitive fluorescent sensor for Cu2+.
Collapse
Affiliation(s)
- Li Liu
- Center for Inspection of Gansu Drug Administration (Center for Vaccine Inspection of Gansu), Lanzhou, 730030, China
| | - Tao Zhou
- School of Materials and Energy, Lanzhou University, Lanzhou, 730030, China
| | - Yawen Li
- School of Materials and Energy, Lanzhou University, Lanzhou, 730030, China
| | - Tianrong Li
- School of Materials and Energy, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Bera S, Selvakumaraswamy A, Nayak BP, Prasad P. Aggregation-induced emission luminogens for latent fingerprint detection. Chem Commun (Camb) 2024; 60:8314-8338. [PMID: 39037456 DOI: 10.1039/d4cc02026j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
For over a century, fingerprints have served as a pivotal tool for identification of individuals owing to their enduring characteristics and easily apparent features, particularly in the realm of criminal investigations. Latent fingerprints (LFPs) are "invisible fingerprints" that are most commonly available at crime scenes and require a rapid, selective, sensitive, and convenient method for detection. However, existing fingerprint development techniques harbour limitations, prompting the exploration of novel approaches that prioritize investigator safety and environmental sustainability. Leveraging the unique photophysical properties of aggregation-induced emission luminogens (AIEgens) has emerged as a promising strategy for on-site analysis of LFP visualization. In this highlight, we have presented a comparative analysis of various AIEgens (organic compounds, metal complexes, nanoparticles, and polymers) for the development and detection of LFPs. Through this examination, insights into the efficiency and potential applications of AIE-based fingerprint development techniques are provided. In addition, several strategies have been proposed for circumventing the limitations of existing AIEgens. We hope that this highlight article will encourage more researchers to investigate AIEgens in LFP detection, contributing to forensic science.
Collapse
Affiliation(s)
- Sonali Bera
- Medicinal Chemistry and Chemical Biology Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| | | | - Biswa Prakash Nayak
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Puja Prasad
- Medicinal Chemistry and Chemical Biology Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
4
|
Bhardwaj K, Anand T, Jangir R, Sahoo SK. Improving Copper(II) Sensitivity by Combined use of AIEE Active and Inactive Schiff Bases. J Fluoresc 2024; 34:1065-1074. [PMID: 37452963 DOI: 10.1007/s10895-023-03347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
An aggregation-induced emission enhancement (AIEE) active Schiff base PNN was synthesized by condensing benzidine with 2-hydroxynaphthaldehyde. The green-fluorescent PNN (λem = 510 nm) in DMF turned to yellow-fluorescent PNN (λem = 557 nm) upon increasing the fractions of HEPES buffer (10 mM, pH 7.4) above 40%. The DLS study supports the self-aggregation of PNN that restricts the intramolecular rotation and activates the excited-state intramolecular proton transfer (ESIPT) process. The fluorescence emission of AIEE active PNN was quenched by Cu2+ with an estimated detection limit of 2.1 µM. Interestingly, the detection limit of PNN towards Cu2+ was improved in the presence of an AIEE inactive Schiff base PBPM obtained by reacting 1,4-diaminobenzene with pyridine-4-carbaldehyde. The mixed PNN-PBPM showed a detection limit of 0.49 µM. The practical utility of PNN-PBPM was validated by quantifying Cu2+ ions in real environmental water samples and green tea.
Collapse
Affiliation(s)
- Kanishk Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, 395007, Gujarat, India
| | - Thangaraj Anand
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Ritambhara Jangir
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, 395007, Gujarat, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
5
|
Patel DA, Anand T, Selvam P, Sahoo SK. Aggregation-induced Emission Active Naphthalimide Derived Schiff Base for Detecting Cu 2+ and Its Applications. J Fluoresc 2024; 34:359-366. [PMID: 37266835 DOI: 10.1007/s10895-023-03287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Herein, an aggregation-induced emission (AIE) active Schiff base (NHS) was synthesized by condensing naphthalimide hydrazide with salicylaldehyde. The non-fluorescent solution of NHS in DMSO turned to emissive NHS upon increasing the HEPES fraction in DMSO from 70 to 95%. The UV-Vis absorption and DLS studies supported the self-aggregation of NHS that restricted the intramolecular rotation and activated the ESIPT process. The blue fluorescence of AIE luminogen NHS in DMSO:HEPES (5:95, v/v, pH = 7.4) was examined by adding different metal ions (Al3+, Ca2+, Cd2+, Co2+, Cu2+, Cr2+, Fe2+, Fe3+, Hg2+, Mg2+, Mn2+, Ni2+, Pb2+ and Zn2+). NHS showed a selective fluorescence switch-off response for Cu2+ due to the chelation enhancement quenching effect (CHEQ). The quenching of NHS by Cu2+ was explored by using density functional theory (DFT) and Stern-Volmer plot. The practical utility of NHS was examined by quantitative and qualitative analysis of Cu2+ in real water samples.
Collapse
Affiliation(s)
- Dhvani A Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India
| | - Thangaraj Anand
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Pravinkumar Selvam
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India.
| |
Collapse
|
6
|
Patel DA, Anand T, Sk AK, Sahoo SK. Fluorescence Sensing of pH and p-Nitrophenol Using an AIEE Active Pyridoxal Derived Schiff Base. J Fluoresc 2023; 33:1431-1441. [PMID: 36745310 DOI: 10.1007/s10895-023-03167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
An easy-to-prepare aggregation-induced emission enhancement (AIEE) active Schiff base NPY was synthesized by condensing vitamin B6 cofactor pyridoxal with 3-hydroxy-2-naphthoic hydrazide, and employed for the fluorescent sensing of pH and p-nitrophenol (p-NP). The AIEE phenomenon of NPY was investigated in mixed DMSO/H2O medium. The weakly yellow-fluorescent NPY (λem = 535 nm) in pure DMSO turned to a bright cyan-fluorescent NPY (λem = 490 nm) upon addition of poor solvent water. The DLS and SEM analyses supported the self-aggregation of NPY that restricted the intramolecular rotation and activated the excited state intramolecular proton transfer (ESIPT) process. The AIEE luminogen (AIEEgen) NPY containing 90% of water fraction (fwater) was employed for the fluorescent sensing of pH. AIEEgen NPY displays three distinct fluorescent pH windows: non-fluorescent below pH 3.0 and above pH 10.0, cyan fluorescent between pH 3.0 to 8.0, and yellow fluorescent between pH 8.0 to 10.0. AIEEgen NPY was also applied for the detection of nitroaromatics in HEPES buffer (10% DMSO, 10 mM, pH 7.0). The addition of p-NP selectively quenched the fluorescent intensity of AIEEgen NPY with an estimated detection limit of 1.73 µM. The analytical utility of AIEEgen NPY was examined by quantifying p-NP in different real water samples.
Collapse
Affiliation(s)
- Dhvani A Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India
| | - Thangaraj Anand
- Department of Chemistry, Sathyabama Institute of Science and Technology, 600119, Chennai, India
| | - Ashok Kumar Sk
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India.
| |
Collapse
|
7
|
Kistwal T, Dasgupta S, Chowdhury A, Datta A. Disruption of aggregates of a Zn2+-complex of a schiff base in water by surfactants: Insights from fluorescence spectroscopy in ensemble and single molecule levels. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|