1
|
Ju Z, Zhang Y, Kong L. A Highly Selective Fluorescent Probe for Hydrogen Sulfide and its Application in Living Cell. J Fluoresc 2025; 35:1163-1169. [PMID: 38300483 DOI: 10.1007/s10895-024-03601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
A new Near-infrared fluorescent probe for hydrogen sulfide detection was synthesized by employing dicyanoisophorone based fluorescence dye as a fluorophore and methyl 3-(2-(carbonyl)phenyl)-2-cyanoacrylate group as the response unit. The Probe DCI-H2S showed a long emission wavelength (λem = 674 nm). Based on the H2S-induced addition-cyclization of deprotecting methyl 3-(2-(carbonyl)phenyl)-2-cyanoacrylate group, the probe DCI-H2S showed high selectivity, sensitivity and response speed toward hydrogen sulfide under room temperature. These numerous advantages of the probe DCI-H2S make it to potentially detect endogenous hydrogen sulfide in living organisms.
Collapse
Affiliation(s)
- Zhiyu Ju
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Drug Intermediates Engineering Research Center for Cleaner Production of Henan Province, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China.
| | - Yuxiang Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Drug Intermediates Engineering Research Center for Cleaner Production of Henan Province, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China
| | - Lingyu Kong
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Drug Intermediates Engineering Research Center for Cleaner Production of Henan Province, College of Chemical and Materials Engineering, Xuchang University, Henan, 461000, PR China
| |
Collapse
|
2
|
Liu L, Liu Y, Ren H, Hou P, Wang H, Sun J, Liu L, He C, Chen S. Visual Tracking of Hydrogen Sulfide: Application of a Novel Lysosome-Targeted Fluorescent Probe for Bioimaging and Food Safety Assessment. Molecules 2024; 29:3906. [PMID: 39202985 PMCID: PMC11357609 DOI: 10.3390/molecules29163906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
The equilibrium state of hydrogen sulfide (H2S), a gaseous signaling molecule produced by lysosomal metabolites, in vivo is crucial for cellular function. Abnormal fluctuations in H2S concentration can interfere with the normal function of lysosomes, which has been closely linked to the pathogenesis of a variety of diseases. In view of this, a novel fluorescent probe Lyso-DPP based on 1,3,5-triarylpyrazolines was developed for the precise detection of H2S in lysosomes by using the hydrophilic morpholine moiety as a lysosomal targeting unit, and 2,4-dinitroanisole as a fluorescence-quenching and H2S-responsive unit. The probe cleverly combines the advantages of simple synthesis, sensitive blue fluorescence turn-on with a limit of detection, LOD, of 97.3 nM, good stability, and fast response time (10 min), which makes Lyso-DPP successful in portable monitoring of meat freshness in the form of test strips. Moreover, the excellent biocompatibility and precise targeting capability of the probe Lyso-DPP make it perform well in the monitoring of H2S in lysosomes, living cells, and zebrafish. This work not only provides new technical tools for food quality control but also paves up new ideas for early diagnosis and treatment of H2S-related diseases.
Collapse
Affiliation(s)
- Likun Liu
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yitong Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China (H.R.); (P.H.)
| | - Haoqing Ren
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China (H.R.); (P.H.)
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China (H.R.); (P.H.)
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China (H.R.); (P.H.)
| | - Jingwen Sun
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China (H.R.); (P.H.)
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China (H.R.); (P.H.)
| | - Chuan He
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China (H.R.); (P.H.)
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China (H.R.); (P.H.)
| |
Collapse
|
3
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
4
|
Guo MY, Li YZ, Liu XJ, Wang BZ, Yang YS, Zhu HL. A structural optimized fluorescent probe for monitoring hydrogen sulfide in cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123763. [PMID: 38198994 DOI: 10.1016/j.saa.2023.123763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
In this work, we reported a fluorescent probe Fur-SH, a derivative of benzofuranone, which was used to detect H2S in living cells and zebrafish. Based on the three structural characteristics of the probe, the effects of different structural modifications on the optical properties of the fluorophore were compared. Then, the fluorophore Fur-OH was synthesized by modifying diethylamino group with benzofuranone as the main skeleton. With 2,4-dinitrofluorobenzene as the recognition group and diethylamino as the electron donor, the push-pull electron effect occurred with nitro group, which led to fluorescence quenching, and an openable fluorescent probe Fur-SH was formed. The probe Fur-SH (λex = 510 nm; λem = 570 nm) had the advantages of smaller full width at half maxima, rapid response (5 min) and wide pH window. The quantitative properties of the probe were excellent, reaching saturation at 50 equivalents of substrate. The probe Fur-SH showed high sensitivity to H2S, with LOD of 48.9 nM and LOQ of 50 nM. At present, the probe Fur-SH had been applied to fluorescence imaging of MCF-7 cells and zebrafish. By comparing the effects of different structures on the optical properties of fluorophores, this work was expected to be helpful to the development of fluorescent probes in the future.
Collapse
Affiliation(s)
- Meng-Ya Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yun-Zhang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Jinhua Advanced Research Institute, Jinhua 321019, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Guo MY, Liu XJ, Li YZ, Wang BZ, Yang YS, Zhu HL. A human serum albumin-binding-based fluorescent probe for monitoring hydrogen sulfide and bioimaging. Analyst 2024; 149:1280-1288. [PMID: 38226660 DOI: 10.1039/d3an01821k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this work, a fluorescent probe, TPABF-HS, was developed for detecting hydrogen sulfide (H2S) using a human serum albumin (HSA)-binding-based approach for amplifying the fluorescence signal and extending the linear correlation range. Compared to the most recent probes for H2S, the most interesting feature of the detection system developed herein was the especially wide linear range (0-1000 μM (0-100 eq.)), which covered the physiological and pathological levels of H2S. TPABF-HS could be used in applications high sensitivity and selectivity with an LOD value of 0.42 μM. Further, site-competition experiments and molecular docking simulation experiments indicated that signal amplification was realized by the binding of the TPABF fluorophore to the naproxen-binding site of HSA. Moreover, the extension of the measurement span could allow for applications in living cells and Caenorhabditis elegans for imaging both exogenous and endogenous H2S. This work brings new information to the strategy of signal processing by exploiting fluorescent probes.
Collapse
Affiliation(s)
- Meng-Ya Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiao-Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yun-Zhang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Jinhua Advanced Research Institute, Jinhua 321019, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|