1
|
Dong R, Gao J, Vo TG, Xi S, Kee CW, Cao X, Chu W, Liu Y. Engineering high-valence metal-enriched cobalt oxyhydroxide catalysts for an enhanced OER under near-neutral pH conditions. NANOSCALE 2024; 16:12482-12491. [PMID: 38856654 DOI: 10.1039/d4nr01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Understanding water splitting in pH-neutral media has important implications for hydrogen production from seawater. Despite their significance, electrochemical water oxidation and reduction in neutral electrolytes still face great challenges. This study focuses on designing efficient electrocatalysts capable of promoting the oxygen evolution reaction (OER) in neutral media by incorporating high-valence elements into transition-metal hydroxides. The as-prepared and optimized two-dimensional Mo-Co(OH)2 nanosheets, which undergo operando transformation into oxyhydroxide active species, demonstrated an overpotential of 550 mV at 10 mA cm-2 with a Tafel slope of 110.1 mV dec-1 in 0.5 M KHCO3. In situ X-ray absorption spectroscopy revealed that the incorporation of high-valence elements facilitates the generation of CoOOH active sites at low potential and enhances electron transfer kinetics by altering the electronic environment of the Co center. This study offers new insights for developing more efficient OER electrocatalysts and provides fresh ideas for seawater utilization through the study of the reaction mechanism of the near-neutral-pH OER.
Collapse
Affiliation(s)
- Ruijing Dong
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Jiajian Gao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Truong-Giang Vo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Xun Cao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Wei Chu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
2
|
Development of Ferromagnetic Materials Containing Co 2P, Fe 2P Phases from Organometallic Dendrimers Precursors. Molecules 2021; 26:molecules26216732. [PMID: 34771141 PMCID: PMC8588225 DOI: 10.3390/molecules26216732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The development of synthesis methods to access advanced materials, such as magnetic materials that combine multimetallic phosphide phases, remains a worthy research challenge. The most widely used strategies for the synthesis of magnetic transition metal phosphides (TMPs) are organometallic approaches. In this study, Fe-containing homometallic dendrimers and Fe/Co-containing heterometallic dendrimers were used to synthesize magnetic materials containing multimetallic phosphide phases. The crystalline nature of the nearly aggregated particles was indicated for both designed magnetic samples. In contrast to heterometallic samples, homometallic samples showed dendritic effects on their magnetic properties. Specifically, saturation magnetization (Ms) and coercivity (Hc) decrease as dendritic generation increases. Incorporating cobalt into the homometallic dendrimers to prepare the heterometallic dendrimers markedly increases the magnetic properties of the magnetic materials from 60 to 75 emu/g. Ferromagnetism in homometallic and heterometallic particles shows different responses to temperature changes. For example, heterometallic samples were less sensitive to temperature changes due to the presence of Co2P in contrast to the homometallic ones, which show an abrupt change in their slopes at a temperature close to 209 K, which appears to be related to the Fe2P ratios. This study presents dendrimers as a new type of precursor for the assembly of magnetic materials containing a mixture of iron- and cobalt-phosphides phases with tunable magnetism, and provides an opportunity to understand magnetism in such materials.
Collapse
|
4
|
Du Q, Huang Z, Wu Z, Meng X, Yin G, Gao F, Wang L. Facile preparation and bifunctional imaging of Eu-doped GdPO4 nanorods with MRI and cellular luminescence. Dalton Trans 2015; 44:3934-40. [PMID: 25630852 DOI: 10.1039/c4dt03444a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eu-doped GdPO4 NRs coated by silk fibroin have been prepared in a template of silk fibroin (SF) peptides via a mineralization process. A growth mechanism of SF-NRs is proposed to explain their stronger luminescence, better cyto-compatibility and higher longitudinal relaxivity r1.
Collapse
Affiliation(s)
- Qijun Du
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Zhongbing Huang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Zhi Wu
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials
- Research Center for Micro & Nano Materials and Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Guangfu Yin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu
- People's Republic of China
| | - Fabao Gao
- Molecular Imaging Center
- Department of Radiology
- West China Hospital of Sichuan University
- Chengdu
- China
| | - Lei Wang
- Molecular Imaging Center
- Department of Radiology
- West China Hospital of Sichuan University
- Chengdu
- China
| |
Collapse
|
5
|
Pal M, Singh AK, Rakshit R, Mandal K. Surface chemistry modulated introduction of multifunctionality within Co3O4 nanocubes. RSC Adv 2015. [DOI: 10.1039/c4ra12901f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multifunctional Co3O4 nanocubes, having simultaneously intrinsic multicolor fluorescence and excellent catalytic activity in the degradation of harmful pigments have been developed by facile surface modification with small organic ligand.
Collapse
Affiliation(s)
- Monalisa Pal
- Department of Condensed Matter Physics and Material Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700 098
- India
| | - Ashutosh Kumar Singh
- Department of Condensed Matter Physics and Material Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700 098
- India
| | - Rupali Rakshit
- Department of Condensed Matter Physics and Material Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700 098
- India
| | - Kalyan Mandal
- Department of Condensed Matter Physics and Material Sciences
- S. N. Bose National Centre for Basic Sciences
- Kolkata 700 098
- India
| |
Collapse
|
6
|
Liu J, Deng M, Huang Z, Yin G, Liao X, Gu J. Preparation of ZnFe2O4 nanoparticles in the template of silk-fibroin peptide and their neuro-cytocompability in PC12 cells. Colloids Surf B Biointerfaces 2013; 107:19-26. [DOI: 10.1016/j.colsurfb.2013.01.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/27/2022]
|
7
|
Zou Y, Huang Z, Wang Y, Liao X, Yin G, Gu J. Synthesis and cellular compatibility of Co-doped ZnO particles in silk-fibroin peptides. Colloids Surf B Biointerfaces 2013; 102:29-36. [DOI: 10.1016/j.colsurfb.2012.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
|