1
|
Puišo J, Žvirgždas J, Paškevičius A, Arslonova S, Adlienė D. Antimicrobial Properties of Newly Developed Silver-Enriched Red Onion-Polymer Composites. Antibiotics (Basel) 2024; 13:441. [PMID: 38786169 PMCID: PMC11117916 DOI: 10.3390/antibiotics13050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Simple low-cost, nontoxic, environmentally friendly plant-extract-based polymer films play an important role in their application in medicine, the food industry, and agriculture. The addition of silver nanoparticles to the composition of these films enhances their antimicrobial capabilities and makes them suitable for the treatment and prevention of infections. In this study, polymer-based gels and films (AgRonPVA) containing silver nanoparticles (AgNPs) were produced at room temperature from fresh red onion peel extract ("Ron"), silver nitrate, and polyvinyl alcohol (PVA). Silver nanoparticles were synthesized directly in a polymer matrix, which was irradiated by UV light. The presence of nanoparticles was approved by analyzing characteristic local surface plasmon resonance peaks occurring in UV-Vis absorbance spectra of irradiated experimental samples. The proof of evidence was supported by the results of XRD and EDX measurements. The diffusion-based method was applied to investigate the antimicrobial activity of several types of microbes located in the environment of the produced samples. Bacteria Staphylococcus aureus ATCC 29213, Acinetobacter baumannii ATCC BAA 747, and Pseudomonas aeruginosa ATCC 15442; yeasts Candida parapsilosis CBS 8836 and Candida albicans ATCC 90028; and microscopic fungi assays Aspergillus flavus BTL G-33 and Aspergillus fumigatus BTL G-38 were used in this investigation. The greatest effect was observed on Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa bacteria, defining these films as potential candidates for antimicrobial applications. The antimicrobial features of the films were less effective against fungi and the weakest against yeasts.
Collapse
Affiliation(s)
- Judita Puišo
- Department of Physics, Kaunas University of Technology, Studentų Str. 50, LT-51368 Kaunas, Lithuania
| | - Jonas Žvirgždas
- Laboratory of Biodeterioration Research, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.Ž.); (A.P.)
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.Ž.); (A.P.)
| | - Shirin Arslonova
- Tashkent City Branch of Republican Specialized Scientific—Practical Medical Centre of Oncology and Radiology, Boguston Str. 1, Tashkent P.O. Box 100070, Uzbekistan;
| | - Diana Adlienė
- Department of Physics, Kaunas University of Technology, Studentų Str. 50, LT-51368 Kaunas, Lithuania
| |
Collapse
|
2
|
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024; 254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The creation of a suitable scaffold is a crucial step in the process of bone tissue engineering (BTE). The scaffold, acting as an artificial extracellular matrix, plays a significant role in determining the fate of cells by affecting their proliferation and differentiation in BTE. Therefore, careful consideration should be given to the fabrication approach and materials used for scaffold preparation. Natural polypeptides such as gelatin and collagen have been widely used for this purpose. The unique properties of nanoparticles, which vary depending on their size, charge, and physicochemical properties, have demonstrated potential in solving various challenges encountered in BTE. Therefore, nanocomposite biomaterials consisting of polymers and nanoparticles have been extensively used for BTE. Gelatin has also been utilized in combination with other nanomaterials to apply for this purpose. Composites of gelatin with various types of nanoparticles are particularly promising for creating scaffolds with superior biological and physicochemical properties. This review explores the use of nanocomposite biomaterials based on gelatin and various types of nanoparticles together for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Elaheh Salehi Abar
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Torab
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Kong C, Chen S, Ge W, Zhao Y, Xu X, Wang S, Zhang J. Riclin-Capped Silver Nanoparticles as an Antibacterial and Anti-Inflammatory Wound Dressing. Int J Nanomedicine 2022; 17:2629-2641. [PMID: 35721271 PMCID: PMC9205441 DOI: 10.2147/ijn.s366899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose In order to overcome the inflammatory response to bacterial infection during wound healing, we have fabricated an antibacterial and anti-inflammatory wound dressing based on polysaccharide riclin and silver nanoparticles (AgNPs). Methods The riclin-AgNPs nanocomposite was developed by borohydride method and was characterized by UV-Vis, TEM, XRD, Zeta potential, DLS. In vitro, we assessed the cumulative release, antibacterial activities and cytotoxicity. In vivo, we examined the wound healing in mice wound infection experiment and inflammatory mediators using histological observations and gene expression analysis. Results The riclin/AgNPs nanocomposite hydrogel exhibited nanosized orbicular particles with high purity and stability. In vitro, the riclin/AgNPs showed sustained release of AgNPs, effective suppression in pathogen growth and negligible toxicity toward mammalian fibroblasts and macrophage cells. In vivo, the riclin/AgNPs treatment leads to faster and smoother growth of fresh skin with suppressed expression of inflammatory mediators. Conclusion The reported Riclin-AgNPs nanocomposite hydrogel showed both antibacterial and anti-inflammatory functions, which induce significantly accelerated wound healing, indicating great potential as a novel attractive wound dressing material.
Collapse
Affiliation(s)
- Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| |
Collapse
|
4
|
Zulkiflee I, Fauzi MB. Gelatin-Polyvinyl Alcohol Film for Tissue Engineering: A Concise Review. Biomedicines 2021; 9:biomedicines9080979. [PMID: 34440183 PMCID: PMC8391561 DOI: 10.3390/biomedicines9080979] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 01/29/2023] Open
Abstract
The field of biomaterials has been steadily expanding as a large number of pharmaceutical and manufacturing companies invest in research in order to commercialize biomaterial products. Various three-dimensional biomaterials have been explored including film, hydrogel, sponge, microspheres etc., depending on different applications. Thus, gelatin and polyvinyl alcohol (PVA) are widely used as a natural- and synthetic-based biomaterial, respectively, for tissue engineering and clinical settings. The combination of these materials has proven its synergistic effects in wound-healing applications. Therefore, this review aims to highlight the hybrid gelatin and PVA thin film development and evaluate its potential characteristics for tissue engineering applications from existing published evidence (within year 2010–2020). The primary key factor for polymers mixing technology might improve the quality and the efficacy of the intended polymers. This review provides a concise overview of the current knowledge for hybrid gelatin and PVA with the method of fabricating and mixing technology into thin films. Additionally, the findings guided to an optimal fabrication method and scrutinised characterisation parameters of fabricated gelatin-PVA thin film. In conclusion, hybrid gelatin-PVA thin film has higher potential as a treatment for various biomedical and clinical applications.
Collapse
|
5
|
Bio-nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00207-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Mamatha G, Sowmya P, Madhuri D, Mohan Babu N, Suresh Kumar D, Vijaya Charan G, Varaprasad K, Madhukar K. Antimicrobial Cellulose Nanocomposite Films with In Situ Generations of Bimetallic (Ag and Cu) Nanoparticles Using Vitex negundo Leaves Extract. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01819-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Sharma G, Thakur B, Kumar A, Sharma S, Naushad M, Stadler FJ. Atrazine removal using chitin-cl-poly(acrylamide-co-itaconic acid) nanohydrogel: Isotherms and pH responsive nature. Carbohydr Polym 2020; 241:116258. [DOI: 10.1016/j.carbpol.2020.116258] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
|
8
|
Zeinali A, Sirousazar M, Dastgerdi ZH, Kheiri F. Gelatin/Montmorillonite and Gelatin/Polyvinyl Alcohol/Montmorillonite Bionanocomposite Hydrogels: Microstructural, Swelling and Drying Properties. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2019.1709714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Amin Zeinali
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Mohammad Sirousazar
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | | | - Farshad Kheiri
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| |
Collapse
|
9
|
Gholamali I, Hosseini SN, Alipour E, Yadollahi M. Preparation and Characterization of Oxidized Starch/CuO Nanocomposite Hydrogels Applicable in a Drug Delivery System. STARCH-STARKE 2018. [DOI: 10.1002/star.201800118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Iman Gholamali
- Department of Chemistry, North Tehran Branch; Islamic Azad University; 19585/936 Tehran Iran
| | | | - Eskandar Alipour
- Department of Chemistry, North Tehran Branch; Islamic Azad University; 19585/936 Tehran Iran
| | - Mehdi Yadollahi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry; University of Tabriz; 51666 Tabriz Iran
| |
Collapse
|
10
|
Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, Ding J, Chen X. Antibacterial Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700527. [PMID: 29876202 PMCID: PMC5980143 DOI: 10.1002/advs.201700527] [Citation(s) in RCA: 614] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/29/2017] [Indexed: 05/03/2023]
Abstract
Antibacterial materials are recognized as important biomaterials due to their effective inhibition of bacterial infections. Hydrogels are 3D polymer networks crosslinked by either physical interactions or covalent bonds. Currently, hydrogels with an antibacterial function are a main focus in biomedical research. Many advanced antibacterial hydrogels are developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs, and structural diversity. Here, an overview of the structures, performances, mechanisms of action, loading and release behaviors, and applications of various antibacterial hydrogel formulations is provided. Furthermore, the prospects in biomedical research and clinical applications are predicted.
Collapse
Affiliation(s)
- Shuqiang Li
- Department of Bone and Joint SurgeryThe First Hospital of Jilin UniversityChangchun130022P. R. China
| | - Shujun Dong
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- VIP Integrated DepartmentSchool and Hospital of Stomatology Jilin UniversityChangchun130021P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Shicheng Tu
- Department of Bone and Joint SurgeryThe First Hospital of Jilin UniversityChangchun130022P. R. China
| | - Lesan Yan
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Changwen Zhao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
11
|
Bakravi A, Ahamadian Y, Hashemi H, Namazi H. Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21938] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Asghar Bakravi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Yashar Ahamadian
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Hamed Hashemi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN); Tabriz University of Medical Science; Tabriz Iran
| |
Collapse
|
12
|
Azizi S, Mohamad R, Abdul Rahim R, Mohammadinejad R, Bin Ariff A. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int J Biol Macromol 2017; 104:423-431. [PMID: 28591593 DOI: 10.1016/j.ijbiomac.2017.06.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
This paper describes the fabrication and characterization of bio-nanocomposite hydrogel beads based on Kappa-Carrageenan (κ-Carrageenan) and bio-synthesized silver nanoparticles (Ag-NPs). The silver nanoparticles were prepared in aqueous Citrullus colocynthis seed extract as both reducing and capping agent. Cross-linked κ-Carrageenan/Ag-NPs hydrogel beads were prepared using potassium chloride as the cross-linker. The hydrogel beads were characterized using XRD and FESEM. Moreover, swelling property of the hydrogel beads was investigated. The Ag release profile of the hydrogels was obtained by fitting the experimental data to power law equation. The direct visualization of the green synthesized Ag-NPs using TEM shows particle size in the range of 23±2nm. The bio-nanocomposite hydrogels showed lesser swelling behavior in comparison with pure κ-Carrageenan hydrogel. Regardless the slow Ag release, κ-Carrageenan/Ag-NPs presented good antibacterial activities against Staphylococcus aureus, Methicilin Resistant Staphylococcus aurous, Peseudomonas aeruginosa and Escherichia coli with maximum zones of inhibition 11±2mm. Cytotoxicity study showed that the bio-nanocomposite hydrogels with non-toxic effect of concentration below 1000μg/mL have great pharmacological potential and a suitable level of safety for use in the biological systems.
Collapse
Affiliation(s)
- Susan Azizi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arbakariya Bin Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Ghosal K, Manakhov A, Zajíčková L, Thomas S. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering. AAPS PharmSciTech 2017; 18:72-81. [PMID: 26883261 DOI: 10.1208/s12249-016-0500-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/04/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, biodegradable poly(ε-caprolactone) (PCL) nanofibers (PCL-NF), collagen-coated PCL nanofibers (Col-c-PCL), and titanium dioxide-incorporated PCL (TiO2-i-PCL) nanofibers were prepared by electrospinning technique to study the surface and structural compatibility of these scaffolds for skin tisuue engineering. Collagen coating over the PCL nanofibers was done by electrospinning process. Morphology of PCL nanofibers in electrospinning was investigated at different voltages and at different concentrations of PCL. The morphology, interaction between different materials, surface property, and presence of TiO2 were studied by scanning electron microscopy (SEM), Fourier transform IR spectroscopy (FTIR), contact angle measurement, energy dispersion X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). MTT assay and cell adhesion study were done to check biocompatibilty of these scaffolds. SEM study confirmed the formation of nanofibers without beads. FTIR proved presence of collagen on PCL scaffold, and contact angle study showed increment of hydrophilicity of Col-c-PCL and TiO2-i-PCL due to collagen coating and incorporation of TiO2, respectively. EDX and XPS studies revealed distribution of entrapped TiO2 at molecular level. MTT assay and cell adhesion study using L929 fibroblast cell line proved viability of cells with attachment of fibroblasts over the scaffold. Thus, in a nutshell, we can conclude from the outcomes of our investigational works that such composite can be considered as a tissue engineered construct for skin wound healing.
Collapse
|
14
|
Wahid F, Yin JJ, Xue DD, Xue H, Lu YS, Zhong C, Chu LQ. Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol 2016; 88:273-9. [DOI: 10.1016/j.ijbiomac.2016.03.044] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/30/2022]
|
15
|
Varaprasad K, Sadiku R. Development of microbial protective Kolliphor-based nanocomposite hydrogels. J Appl Polym Sci 2015. [DOI: 10.1002/app.42781] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | - Rotimi Sadiku
- Department of Polymer Technology; Tshwane University of Technology; Pretoria 0029 South Africa
| |
Collapse
|
16
|
Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 2015; 79:269-77. [DOI: 10.1016/j.ijbiomac.2015.05.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/23/2022]
|
17
|
Yadollahi M, Farhoudian S, Namazi H. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 2015; 79:37-43. [DOI: 10.1016/j.ijbiomac.2015.04.032] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
|
18
|
Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol 2015; 73:109-14. [DOI: 10.1016/j.ijbiomac.2014.10.063] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 12/23/2022]
|
19
|
Yadollahi M, Gholamali I, Namazi H, Aghazadeh M. Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 2014; 74:136-41. [PMID: 25524743 DOI: 10.1016/j.ijbiomac.2014.11.032] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
In this study, carboxymethyl cellulose/ZnO nanocomposite hydrogels have been synthesized through the in situ formation of ZnO nanoparticles within swollen carboxymethyl cellulose hydrogels. The formation of ZnO nanoparticles in the hydrogels was confirmed using X-ray diffraction, UV-vis spectroscopy and scanning electron microscopy (SEM) studies. SEM micrographs revealed the formation of ZnO nanoparticles with size range of 10-20 nm within the hydrogel matrix. The prepared nanocomposite hydrogels showed a pH and salt sensitive swelling behavior. The ZnO nanocomposite hydrogels have rather higher swelling in different aqueous solutions in comparison with neat hydrogel. The nanocomposite hydrogels demonstrated antibacterial effects against Escherichia coli and Staphylococcus aureus bacteria. The developed carboxymethyl cellulose/ZnO nanocomposite hydrogels can be used effectively for biomedical application.
Collapse
Affiliation(s)
- Mehdi Yadollahi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Iman Gholamali
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran.
| | - Mohammad Aghazadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
20
|
Development of novel protein–Ag nanocomposite for drug delivery and inactivation of bacterial applications. Int J Biol Macromol 2014; 63:75-82. [DOI: 10.1016/j.ijbiomac.2013.10.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 01/13/2023]
|
21
|
Raghavendra GM, Jayaramudu T, Varaprasad K, Ramesh S, Raju KM. Microbial resistant nanocurcumin-gelatin-cellulose fibers for advanced medical applications. RSC Adv 2014. [DOI: 10.1039/c3ra46429f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|