1
|
Arif M, Rauf A, Akhter T. A review on Ag nanoparticles fabricated in microgels. RSC Adv 2024; 14:19381-19399. [PMID: 38887640 PMCID: PMC11182451 DOI: 10.1039/d4ra02467b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In recent years, there has been growing interest in the composites of multi-responsive microgels and silver nanoparticles. This innovative hybrid system harnesses the responsive qualities of microgels while capitalizing on the optical and electronic attributes of silver nanoparticles. This combined system demonstrates a rapid response to minor changes in pH, temperature, ionic strength of the medium, and the concentration of specific biological substances. This review article presents an overview of the recent advancements in the synthesis, classification, characterization methods, and properties of microgels loaded with silver nanoparticles. Furthermore, it explores the diverse applications of these responsive microgels containing silver nanoparticles in catalysis, the biomedical field, nanotechnology, and the mitigation of harmful environmental pollutants.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University Seongnam-13120 Republic of Korea
| |
Collapse
|
2
|
Khan MSJ, Mohd Sidek L, Kamal T, Khan SB, Basri H, Zawawi MH, Ahmed AN. Catalytic innovations: Improving wastewater treatment and hydrogen generation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120228. [PMID: 38377746 DOI: 10.1016/j.jenvman.2024.120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
The effective reduction of hazardous organic pollutants in wastewater is a pressing global concern, necessitating the development of advanced treatment technologies. Pollutants such as nitrophenols and dyes, which pose significant risks to both human and aquatic health, making their reduction particularly crucial. Despite the existence of various methods to eliminate these pollutants, they are not without limitations. The utilization of nanomaterials as catalysts for chemical reduction exhibits a promising alternative owing to their distinguished catalytic activity and substantial surface area. For catalytically reducing the pollutants NaBH4 has been utilized as a useful source for it because it reduces the pollutants quiet efficiently and it also releases hydrogen gas as well which can be used as a source of energy. This paper provides a comprehensive review of recent research on different types of nanomaterials that function as catalysts to reduce organic pollutants and also generating hydrogen from NaBH4 methanolysis while also evaluating the positive and negative aspects of nanocatalyst. Additionally, this paper examines the features effecting the process and the mechanism of catalysis. The comparison of different catalysts is based on size of catalyst, reaction time, rate of reaction, hydrogen generation rate, activation energy, and durability. The information obtained from this paper can be used to steer the development of new catalysts for reducing organic pollutants and generation hydrogen by NaBH4 methanolysis.
Collapse
Affiliation(s)
| | - Lariyah Mohd Sidek
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Hidayah Basri
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Mohd Hafiz Zawawi
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia
| | - Ali Najah Ahmed
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), 43000, Selangor, Malaysia; School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya, 47500, Malaysia.
| |
Collapse
|
3
|
Iqbal S, Iqbal N, Musaddiq S, Farooqi ZH, Habila MA, Wabaidur SM, Iqbal A. Fabrication of NIPMAM based polymer microgel network assisted rhodium nanoparticles for reductive degradation of toxic azo dyes. Heliyon 2024; 10:e25385. [PMID: 38356584 PMCID: PMC10865242 DOI: 10.1016/j.heliyon.2024.e25385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
The aim of this study was to prepare poly-N-isopropylmethacrylamide-co-acrylic acid-acrylamide [p-(NIPMAM-co-AA-AAm)] via precipitation polymerization in an aqueous medium. Rhodium nanoparticles were formed in the microgel network by an in-situ reduction technique with the addition of sodium borohydride as a reducing agent. Pure p-(NIPMAM-co-AA-AAm) and hybrid microgels [Rh-(p-NIPMAM-co-AA-AAm)] microgels were examined by using UV-Visible, FTIR (Fourier Transform Infrared), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), DLS (Dynamic Light Scattering) and XRD (X-Ray Diffraction) techniques. The catalytic activities of the hybrid microgel [Rh-(p-NIPMAM-co-AA-AAm)] for the degradation of azo dyes such as alizarin yellow (AY), congo red (CR), and methyl orange (MO) were compared and the mechanism of the catalytic action by this system was examined. Various parameters including the catalyst amount and dye concentration influenced the catalytic decomposition of azo dyes. In order to maximize the reaction conditions for the dye's quick and efficient decomposition, the reaction process was monitored by spectroscopic analysis. The rate constants for reductive degradation of azo dyes were measured under various conditions. When kapp values were compared for dyes, it was found that [Rh-(p-NIPMAM-co-AA-AAm)] hybrid microgels showed superior activity for the degradation of MO dyes compared to the reductive degradation of CR and AY.
Collapse
Affiliation(s)
- Sadia Iqbal
- Department of Chemistry, The Women University Multan, 66000, Pakistan
| | - Nimra Iqbal
- Department of Chemistry, The Women University Multan, 66000, Pakistan
| | - Sara Musaddiq
- Department of Chemistry, The Women University Multan, 66000, Pakistan
| | | | - Mohamed A. Habila
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Amjad Iqbal
- Faculty of Materials Engineering, Silesian University of Technology, Gliwice 44-100 , Poland
| |
Collapse
|
4
|
Khaleghi N, Forouzandeh-Malati M, Ganjali F, Rashvandi Z, Zarei-Shokat S, Taheri-Ledari R, Maleki A. Silver-assisted reduction of nitroarenes by an Ag-embedded curcumin/melamine-functionalized magnetic nanocatalyst. Sci Rep 2023; 13:5225. [PMID: 36997564 PMCID: PMC10063568 DOI: 10.1038/s41598-023-32560-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
In the current study, we introduce a hybrid magnetic nanocomposite comprised of curcumin (Cur), iron oxide magnetic nanoparticles (Fe3O4 MNPs), melamine linker (Mel), and silver nanoparticles (Ag NPs). Initially, a facile in situ route is administrated for preparing the Fe3O4@Cur/Mel-Ag effectual magnetic catalytic system. In addition, the advanced catalytic performance of the nanocomposite to reduce the nitrobenzene (NB) derivatives as hazardous chemical substances were assessed. Nevertheless, a high reaction yield of 98% has been achieved in short reaction times 10 min. Moreover, the Fe3O4@Cur/Mel-Ag magnetic nanocomposite was conveniently collected by an external magnet and recycled 5 times without a noticeable diminish in catalytic performance. Therefore, the prepared magnetic nanocomposite is a privileged substance for NB derivatives reduction since it achieved notable catalytic activity.
Collapse
Affiliation(s)
- Nima Khaleghi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zahra Rashvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
5
|
Singh VK, Kumar K, Singh N, Tiwari R, Krishnamoorthi S. Swift catalytic reduction of hazardous pollutants by new generation microgels. SOFT MATTER 2022; 18:535-544. [PMID: 34919101 DOI: 10.1039/d1sm01559a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this manuscript, we report for the first time a new generation microgel synthesis without using any divinyl functionalized cross-linker. A new generation less crosslinked microgel structure has been achieved by optimizing the amount of N-hydroxy methyl acrylamide (NHMA) and using a fixed amount of styrene (St), acrylic acid (AA) and N-vinyl pyrrolidone (NVP) via a free radical emulsion solution polymerization technique. Poly(NHMA) works as a hydrophilic as well as a crosslinking agent. Furthermore, microgels have been upgraded into a composite by incorporation of Ag nanoparticles for catalytic reduction applications. Microgels and their composites have been characterized by EDAX, FT-IR, particle size analyzer, SEM, TEM, TGA, UV-vis spectroscopy and XRD. Methylene blue (MB) dye and p-nitrophenol (PNP) were chosen as model hazardous pollutants for catalytic reduction applications. Microgels efficiently adsorb both pollutants over the surface and microgel_Ag composites dramatically reduced both pollutants in the non-toxic form at room temperature by using smaller doses of NaBH4.
Collapse
Affiliation(s)
- Vinai Kumar Singh
- Department of Chemistry & Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, UP, India.
| | - Krishna Kumar
- Department of Chemistry & Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, UP, India.
| | - Nishant Singh
- University Department of Chemistry, Faculty of Science, Tilka Manjhi Bhagalpur University, Bhagalpur 812007, Bihar, India
| | - Rudramani Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - S Krishnamoorthi
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| |
Collapse
|
6
|
Design and Construction of Bioreactor Based on Hybrid Microcapsules and its Bio-catalytic Performance. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Shahid M, Farooqi ZH, Begum R, Arif M, Azam M, Irfan A, Farooq U. Multi-functional organic–inorganic hydrogel microspheres as efficient catalytic system for reduction of toxic dyes in aqueous medium. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Poly(N-isopropylacrylamide-acrylamide-methacrylic acid) [p(NAM)] colloidal particles were synthesized and stabilized in aqueous medium. Ag nanoparticles were fabricated inside the p(NAM) system by in-situ reduction of Ag+ ions with NaBH4 to obtain Ag-p(NAM) organic–inorganic hybrid with fascinating catalytic properties. Various characterization techniques including XRD, FTIR, DLS, TEM and UV–visible spectroscopy were used to confirm the fabrication of p(NAM) and Ag-p(NAM) in aqueous medium. Loading of silver nanoparticles into the p(NAM) does not affect responsive properties of the colloidal system. Ag-p(NAM) system was used as catalyst for reduction of toxic dyes including methyl orange (MO) and Congo red (CR) from aqueous medium. Ag-p(NAM) catalyzed reduction of dyes was carried out under different reaction conditions to explore the catalytic process of degradation. The Ag-p(NAM) catalytic system is recyclable and reusable with almost same catalytic activity up to four cycles.
Collapse
Affiliation(s)
- Muhammad Shahid
- School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| | - Zahoor H. Farooqi
- School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| | - Muhammad Arif
- School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
- Department of Chemistry , School of Science, University of Management and Technology , Lahore 54770 , Pakistan
| | - Muhammad Azam
- School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
- Department of Chemistry , Faculty of Science, King Khalid University , P.O. Box 9004 , Abha 61413 , Saudi Arabia
| | - Umar Farooq
- School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| |
Collapse
|
8
|
Iqbal S, Musaddiq S, Begum R, Irfan A, Ahmad Z, Azam M, Nisar J, Farooqi ZH. Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of para-nitrophenol. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The purpose of present work is to fabricate rhodium nanoparticles in Poly(N-isopropylmethacrylamide-acrylic acid) [p(NMAA)] microgel system. Synthesized polymer [p(NMAA)] microgels and rhodium nanoparticles loaded [Rh-p(NMAA)] microgels were analyzed by FTIR (Fourier Transform Infra-red) spectroscopy, XRD (X-ray Diffraction) analysis and UV/Vis (Ultraviolet–Visible) spectroscopy. Catalytic reductive conversion of P-nitrophenol (P-Nph) into P-aminophenol (P-Aph) via Rh-p(NMAA) was used to evaluate the catalytic activity of the hybrid microgel [Rh-p(NMAA)]. Kinetic study of catalytic reductive conversion of P-Nph was explored by considering various reaction parameters. It was found that the value of first order observed rate constant (k
obs) was varied from 0.019 to 0.206 min−1 with change in concentration of sodium borohydride (SBH) from 3 to 14 mM at given temperature. However, further increment in concentration of SBH from 14 to 17 mM, reduced the value of k
obs from 0.206 to 0.156 min−1. The similar dependence of k
obs on concentration of P-Nph was observed at specific concentration of SBH and Rh-p(NMAA) at constant temperature. Kinetic study reveals that conversion of P-Nph to P-Aph takes place on the surface of rhodium nanoparticles (RhNPs) by adopting different reactions intermediates and obeys the Langmuir-Hinshelwood mechanism. Reduction efficiency of recycled Rh-p(NMAA) catalytic system was also measured and no significant reduction in the percentage catalytic activity was obtained up to four cycles for P-Nph conversion into P-Aph.
Collapse
Affiliation(s)
- Sadia Iqbal
- Department of Chemistry , The Women University Multan , Kutchery Campus , Multan 66000 , Pakistan
| | - Sara Musaddiq
- Department of Chemistry , The Women University Multan , Kutchery Campus , Multan 66000 , Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, Faculty of Science , King Khalid University , Abha 61413 , Saudi Arabia
- Department of Chemistry, Faculty of Science , King Khalid University , Abha 61413 , Saudi Arabia
| | - Zahoor Ahmad
- Department of Chemistry, University of Engineering and Technology, GT Road , Lahore 54890 , Pakistan
| | - Muhammad Azam
- School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| | - Jan Nisar
- National Center of Excellence in Physical Chemistry , University of Peshawar , Peshawar , Pakistan
| | - Zahoor H. Farooqi
- School of Chemistry, University of the Punjab, New Campus , Lahore 54590 , Pakistan
| |
Collapse
|
9
|
Iqbal S, Zahoor C, Musaddiq S, Hussain M, Begum R, Irfan A, Azam M, Farooqi ZH. Silver nanoparticles stabilized in polymer hydrogels for catalytic degradation of azo dyes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110924. [PMID: 32800211 DOI: 10.1016/j.ecoenv.2020.110924] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Fabrication of poly-(N-isopropylmethacrylamide-co-methacrylic acid) [p(NMA)] microgels to be utilized as microreactors to synthesize stable Ag nanoparticles for catalytic reductive degradation of dyes has been addressed in this work. Both p(NMA) microgel and Ag-p(NMA) hybrid microgel systems have been analyzed by Fourier transform infra-red and Dynamic light scattering, Ultraviolet-Visible spectroscopy, X-ray diffraction and Transmission electron microscopy. Catalytic activity of Ag-p(NMA) towards reductive degradation of Congo Red (CR), Methyl Orange (MO) and Alizarin Yellow (AY) was investigated under different operating conditions. Spectrophotometry was employed to check the progress of reaction while the rate constant (kapp) value of degradation reaction was determined under various conditions to optimize reaction parameters for rapid and economical degradation of these dyes. An increase in kapp value was observed by increasing feed content of dye up to a certain value that decreases again by further increment in dye concentration which reflects that catalysis follows Langmuir-Hinshelwood mechanism. A gradual increase in the kapp value was also observed with increasing quantity of hybrid microgel used as a catalyst. By comparing kapp values of degradation of aforementioned dyes, it was found that Ag-p(NMA) hybrid microgel gives better activity for MO dye degradation in comparison to catalytic degradation of CR and AY.
Collapse
Affiliation(s)
- Sadia Iqbal
- Department of Chemistry, The Women University Multan, Kutchery Campus, Multan 66000, Pakistan
| | - Chandani Zahoor
- Department of Chemistry, The Women University Multan, Kutchery Campus, Multan 66000, Pakistan
| | - Sara Musaddiq
- Department of Chemistry, The Women University Multan, Kutchery Campus, Multan 66000, Pakistan
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore campus, Defense Road, Lahore 54000, Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Azam
- Institute of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
10
|
Rahimi J, Taheri-Ledari R, Niksefat M, Maleki A. Enhanced reduction of nitrobenzene derivatives: Effective strategy executed by Fe3O4/PVA-10%Ag as a versatile hybrid nanocatalyst. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105850] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
11
|
Mohan A, Rout L, Thomas AM, Peter J, Nagappan S, Parambadath S, Ha CS. Palladium nanoparticles-anchored dual-responsive SBA-15-PNIPAM/PMAA nanoreactor: a novel heterogeneous catalyst for a green Suzuki–Miyaura cross-coupling reaction. RSC Adv 2020; 10:28193-28204. [PMID: 35519126 PMCID: PMC9055733 DOI: 10.1039/d0ra05786j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023] Open
Abstract
Palladium nanoparticles-anchored dual-responsive SBA-15-copolymer nanoreactor was developed as a novel heterogeneous catalyst for green Suzuki–Miyaura cross-coupling reaction.
Collapse
Affiliation(s)
- Anandhu Mohan
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Lipeeka Rout
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Anju Maria Thomas
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jerome Peter
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Saravanan Nagappan
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| | | | - Chang-Sik Ha
- Department of Polymer Science and Engineering
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
12
|
Photocrosslinked hybrid composites with Ag, Au or Au-Ag NPs as visible-light triggered photocatalysts for degradation/reduction of aromatic nitroderivatives. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Shahid M, Farooqi ZH, Begum R, Arif M, Wu W, Irfan A. Hybrid Microgels for Catalytic and Photocatalytic Removal of Nitroarenes and Organic Dyes From Aqueous Medium: A Review. Crit Rev Anal Chem 2019; 50:513-537. [PMID: 31559830 DOI: 10.1080/10408347.2019.1663148] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Polymer microgels loaded with inorganic nanoparticles have gained much attention as catalytic systems for reduction of toxic chemicals. Enhanced catalytic properties of hybrid microgels are related to the stimuli responsive nature of microgels and extraordinary stability of nanoparticles within network of polymer microgels. Catalytic properties of hybrid microgels can be tuned very easily by slight variation in environmental conditions. Herein we have reviewed catalytic reduction of toxic chemicals such as nitroarenes and organic dyes in the presence of appropriate hybrid microgel catalytic systems under different operating conditions of reaction. Recent advancements in catalytic behavior of hybrid microgels with special emphasis on their ability to catalytically degrade various toxic chemicals has been presented in this review.
Collapse
Affiliation(s)
- Muhammad Shahid
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Muhammad Arif
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan.,Department of Chemistry, School of Science, University of Management and Technology, C-II Johar Town, Lahore, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
14
|
Din MI, Khalid R, Hussain Z, Hussain T, Mujahid A, Najeeb J, Izhar F. Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: A Critical Review. Crit Rev Anal Chem 2019; 50:322-338. [DOI: 10.1080/10408347.2019.1637241] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Muhammad Imran Din
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Zaib Hussain
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Tajamal Hussain
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Adnan Mujahid
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Jawayria Najeeb
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fatima Izhar
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| |
Collapse
|
15
|
Hydrogelator as growth-controlling agent for enhancing the catalytic activity of NiB amorphous alloy catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|