1
|
Xu Y, Zhang H, Zhang Y, Ma J, Jia Q. Epitope molecularly imprinted polymers based on host-guest interaction: specific recognition of CD59. J Chromatogr A 2025; 1755:466056. [PMID: 40382882 DOI: 10.1016/j.chroma.2025.466056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The detection of CD59 is of great clinical importance since it is an important glycoprotein that can serve as a biomarker related to kinds of cancers. In this work, we prepared host-guest interaction based oriented epitope molecularly imprinted polymer (hg-EMIP) for the immobilization of CD59 N-terminal epitopes. Cucurbit[7]uril (CB[7]) and l-phenylalanine (L-phe) were employed as the host and guest; and tannic acid (TA) with abundant hydroxyl groups and diethylenetriamine (DETA) were chosen as the functional monomer and crosslinking agent, respectively. The obtained hg-EMIP can specifically recognize CD59 with the adsorption capacity of 88.2 mg/g and imprinting factor of 5.63, and possesses high reusability. The hg-EMIP-based method possesses a wide linear range (1 ng/mL - 1 μg/mL) and low limit of detection (0.44 ng/mL), and can be successfully used for the detection of CD59 in human serum sample. This study provides a scheme for the preparation of host-guest based epitope molecularly imprinted polymers for helping to identify potential disease biomarkers efficiently.
Collapse
Affiliation(s)
- Yitong Xu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Huifeng Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, PR China
| | - Ying Zhang
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
2
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
3
|
Ding F, Ma Y, Fan W, Xu J, Pan G. Tailor-made molecular imprints for biological event intervention. Trends Biotechnol 2024; 42:1097-1111. [PMID: 38604879 DOI: 10.1016/j.tibtech.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
Molecular imprints, which are crosslinked architectures containing specific molecular recognition cavities for targeting compounds, have recently transitioned from in vitro diagnosis to in vivo treatment. In current application scenarios, it has become an important topic to create new biomolecular recognition pathways through molecular imprinting, thereby inhibiting the pathogenesis and regulating the development of diseases. This review starts with a pathological analysis, mainly focusing on the corresponding artificial enzymes, enzyme inhibitors and antibody mimics with enhanced functions that are created by molecular imprinting strategies. Recent advances are highlighted in the use of molecular imprints as tailor-made nanomedicines for the prevention of three major diseases: metabolic syndrome, cancer, and bacterial/viral infections.
Collapse
Affiliation(s)
- Fan Ding
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Wensi Fan
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jingjing Xu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
4
|
Yang W, Wang J, Jia L, Li J, Liu S. Stereo-Complex and Click-Chemical Bicrosslinked Amphiphilic Network Gels with Temperature/pH Response. Gels 2023; 9:647. [PMID: 37623102 PMCID: PMC10454454 DOI: 10.3390/gels9080647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Stimulus-responsive hydrogels have been widely used in the field of drug delivery because of their three-dimensional pore size and the ability to change the drug release rate with the change in external environment. In this paper, the temperature-sensitive monomer 2-methyl-2-acrylate-2-(2-methoxyethoxy-ethyl) ethyl ester (MEO2MA) and oligoethylene glycol methyl ether methacrylate (OEGMA) as well as the pH-sensitive monomer N,N-Diethylaminoethyl methacrylate (DEAEMA) were used to make the gel with temperature and pH response. Four kinds of physicochemical double-crosslinked amphiphilic co-network gels with different polymerization degrees were prepared by the one-pot method using the stereocomplex between polylactic acid as physical crosslinking and click chemistry as chemical crosslinking. By testing morphology, swelling, thermal stability and mechanical properties, the properties of the four hydrogels were compared. Finally, the drug release rate of the four gels was tested by UV-Vis spectrophotometer. It was found that the synthetic hydrogels had a good drug release rate and targeting, and had great application prospect in drug delivery.
Collapse
Affiliation(s)
| | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (W.Y.); (J.W.); (L.J.); (J.L.)
| |
Collapse
|
5
|
Baohe Li, Jiang L, Wang Y, Li C, Yu D, Wang N. Construction and Properties of New-Type Photo-Responsive Molecular Imprinting Materials. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
6
|
Arshad Z, Ali SA. Synthesis and anticorrosive application of biomimetic dopamine-based cationic polyelectrolytes derived from diallylammonium salts. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Kakkar V, Narula P. Role of molecularly imprinted hydrogels in drug delivery - A current perspective. Int J Pharm 2022; 625:121883. [PMID: 35870667 DOI: 10.1016/j.ijpharm.2022.121883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 10/17/2022]
Abstract
Molecular imprinting in hydrogels crafts memory for template molecules in a flexible macromolecular structure. Molecular imprinting can control the pattern of the drug release via different mechanistic pathways which may involve swelling, which releases the drug via diffusion or receptive-swollen networks. Responsive hydrogels or smart hydrogels can be tailored to undergo a change in the network structure in response to a stimulus by inserting specific chemical or biological entities along their backbone polymer chains. The stimuli which can be either physical, chemical or biochemical in nature, may impact at various energy levels thereby initiating the molecular interactions at critical onset points. Conventional hydrogels lack in responding to an external stimuli in a swift manner, hence the molecular imprinting technology can significantly advance the therapeutic efficiency of the drugs with anticipated controlled release and targeting efficiency. Molecular imprinting in hydrogels is thus anticipated as a step towards establishment of drug delivery systems by providing improved delivery profiles or longer release times and deliver the drugs in a feedback regulated way. The review article focuses on the current scenario of molecularly imprinted hydrogels with emphasis on the imprinting strategies within hydrogels and challenges encountered, latent translational applications, and future perspectives.
Collapse
Affiliation(s)
- Vandita Kakkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 5 160014, India.
| | - Priyanka Narula
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 5 160014, India
| |
Collapse
|
8
|
Ganjali F, Eivazzadeh-Keihan R, Aghamirza Moghim Aliabadi H, Maleki A, Pouri S, Ahangari Cohan R, Hashemi SM, Mahdavi M. Biocompatibility and Antimicrobial Investigation of Agar-Tannic Acid Hydrogel Reinforced with Silk Fibroin and Zinc Manganese Oxide Magnetic Microparticles. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Recent advances of magnetic molecularly imprinted materials: From materials design to complex sample pretreatment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Chu Z, Xue C, Shao K, Xiang L, Zhao X, Chen C, Pan J, Lin D. Photonic Crystal-Embedded Molecularly Imprinted Contact Lenses for Controlled Drug Release. ACS APPLIED BIO MATERIALS 2022; 5:243-251. [PMID: 35014810 DOI: 10.1021/acsabm.1c01045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As a noninvasive eye disease detection and drug delivery device, contact lenses can improve eye bioavailability and enable continuous drug delivery. In order to monitor the release of drugs in real time, molecularly imprinted contact lenses (MICLs) based on photonic crystals (PCs) were prepared for the treatment of diabetes-related diseases. The specific adsorption of molecularly imprinted polymers on dexamethasone sodium phosphate (DSP) increased the drug loading and optimized the drug release behavior. At the same time, the drug release ensures the rapid color report during the loading and releasing of drugs due to the volume and refractive index change of the hydrogel matrix. The continuous and slow release of DSP by MICLs in artificial tears was successfully monitored through structural color changes, and the cytotoxicity test results showed that the MICL had good biocompatibility. Therefore, MICLs with a PC structure color have great biomedical potentiality in the future.
Collapse
Affiliation(s)
- Zhaoran Chu
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Chao Xue
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Kan Shao
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Lanlan Xiang
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xueling Zhao
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Cheng Chen
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jianfeng Pan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Donghai Lin
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
11
|
Design and Construction of Bioreactor Based on Hybrid Microcapsules and its Bio-catalytic Performance. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
|
13
|
Wei P, Li Z, Zhao X, Song R, Zhu Z. Fe3O4/SiO2/CS surface ion-imprinted polymer modified glassy carbon electrode for highly sensitivity and selectivity detection of toxic metal ions. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Fabrication of a thermal responsive hemoglobin (Hb) biosensor via Hb-catalyzed eATRP on the surface of ZnO nanoflowers. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Chen G, Tang W, Wang X, Zhao X, Chen C, Zhu Z. Applications of Hydrogels with Special Physical Properties in Biomedicine. Polymers (Basel) 2019; 11:E1420. [PMID: 31470661 PMCID: PMC6780509 DOI: 10.3390/polym11091420] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
As a polymer matrix containing a large amount of water, hydrogels have been widely used in many fields such as biology and medicine due to its similarity to extracellular matrix components, and its contact with blood, body fluids, and human tissue does not affect the metabolic processes of living organisms. However, due to the lack of unique physical properties of traditional polymer hydrogels, its further application in the high-end field is limited. With the progress of study, a series of hydrogels with special structures, such as double network hydrogel, composite hydrogel, Tetra-PEG gel, and topological gel, have improved the situation to a large extent. At the same time, the progress of research on the biocompatibility and biodegradability of hydrogels, which are expected to be used in biomedical fields, is also worthy of attention. This review introduces four such types of high-strength polymeric hydrogels and the mechanisms for improving their mechanical strength. Moreover, a discussion will be made around specific methods for imparting special physical properties to hydrogels and applications in the field of biomedicine such as cell culture, medical surgery, tissue engineering, and biosensing. At the end of the review, the main reasons and contradictions for the limits of the current applications are explained. An outlook on the future research in related fields and the importance of carrying out research in this area to promote medical progress are emphasized.
Collapse
Affiliation(s)
- Gong Chen
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Wenwei Tang
- Modern Service Department, College of International Vocational Education, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xiaohui Wang
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xueling Zhao
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China
- Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| | - Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Zhigang Zhu
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
- Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| |
Collapse
|