1
|
Abdel-Rahman LH, Basha MT, Al-Farhan BS, Alharbi W, Shehata MR, Al Zamil NO, Abou El-Ezz D. Synthesis, Characterization, DFT Studies of Novel Cu(II), Zn(II), VO(II), Cr(III), and La(III) Chloro-Substituted Schiff Base Complexes: Aspects of Its Antimicrobial, Antioxidant, Anti-Inflammatory, and Photodegradation of Methylene Blue. Molecules 2023; 28:4777. [PMID: 37375332 DOI: 10.3390/molecules28124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
A new chlorobenzylidene imine ligand, (E)-1-((5-chloro-2-hydroxybenzylidene)amino) naphthalen-2-ol (HL), and its [Zn(L)(NO3)(H2O)3], [La(L)(NO3)2(H2O)2], [VO(L)(OC2H5)(H2O)2], [Cu(L)(NO3)(H2O)3], and [Cr(L)(NO3)2(H2O)2], complexes were synthesized and characterized. The characterization involved elemental analysis, FT-IR, UV/Vis, NMR, mass spectra, molar conductance, and magnetic susceptibility measurements. The obtained data confirmed the octahedral geometrical structures of all metal complexes, while the [VO(L)(OC2H5)(H2O)2] complex exhibited a distorted square pyramidal structure. The complexes were found to be thermally stable based on their kinetic parameters determined using the Coats-Redfern method. The DFT/B3LYP technique was employed to calculate the optimized structures, energy gaps, and other important theoretical descriptors of the complexes. In vitro antibacterial assays were conducted to evaluate the complexes' potential against pathogenic bacteria and fungi, comparing them to the free ligand. The compounds exhibited excellent fungicidal activity against Candida albicans ATCC: 10231 (C. albicans) and Aspergillus negar ATCC: 16404 (A. negar), with inhibition zones of HL, [Zn(L)(NO3)(H2O)3], and [La(L)(NO3)2(H2O)2] three times higher than that of the Nystatin antibiotic. The DNA binding affinity of the metal complexes and their ligand was investigated using UV-visible, viscosity, and gel electrophoresis methods, suggesting an intercalative binding mode. The absorption studies yielded Kb values ranging from 4.40 × 105 to 7.30 × 105 M-1, indicating high binding strength to DNA comparable to ethidium bromide (value 107 M-1). Additionally, the antioxidant activity of all complexes was measured and compared to vitamin C. The anti-inflammatory efficacy of the ligand and its metal complexes was evaluated, revealing that [Cu(L)(NO3)(H2O)3] exhibited the most effective activity compared to ibuprofen. Molecular docking studies were conducted to explore the binding nature and affinity of the synthesized compounds with the receptor of Candida albicans oxidoreductase/oxidoreductase INHIBITOR (PDB ID: 5V5Z). Overall, the combined findings of this work demonstrate the potential of these new compounds as efficient fungicidal and anti-inflammatory agents. Furthermore, the photocatalytic effect of the Cu(II) Schiff base complex/GO was examined.
Collapse
Affiliation(s)
| | - Maram T Basha
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Badriah Saad Al-Farhan
- Chemistry Department, Faculty of Girls for Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Walaa Alharbi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohamed R Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Noura O Al Zamil
- Department of Chemistry, College of Science, Imam Abdurrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Doaa Abou El-Ezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza 12566, Egypt
| |
Collapse
|
2
|
Abdel-Rahman LH, Abdelghani AA, AlObaid AA, El-Ezz DA, Warad I, Shehata MR, Abdalla EM. Novel Bromo and methoxy substituted Schiff base complexes of Mn(II), Fe(III), and Cr(III) for anticancer, antimicrobial, docking, and ADMET studies. Sci Rep 2023; 13:3199. [PMID: 36823294 PMCID: PMC9950075 DOI: 10.1038/s41598-023-29386-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
In this study, four new Mn(II), Fe(III), and Cr(III) complexes with two Schiff base ligands namely, 4-bromo-2-[(E)-{[4-(2-hydroxyethyl)phenyl]imino}methyl]phenol (HL1) and 2-[(E)-{[4-(2-hydroxyethyl)phenyl]imino}methyl]-4-methoxy phenol (HL2) have been synthesized and characterized. Different analytical and spectral methods have been used to characterize the ligands and their complexes. General formulas of [M(L)Cl2(H2O)2] for FeL1, CrL1 and CrL2, and [M(L)Cl(H2O)3] for MnL2 were proposed. HOMO and LUMO energies, as well as the electrical characteristics, have been calculated using DFT/B3LYP calculations with Gaussian 09 program. The optimized lowest energy configurations of the complexes are proven. The disc diffusion technique was used to test the pharmacological activities' antibacterial efficacy against diverse bacterial and fungus species. The MTT technique was used to assess the in vitro cytotoxicity of the ligands and their metal complexes on the Hep-G2 human liver carcinoma cell line and the MCF-7 human breast cancer cell line. All compounds displayed better activity compared to the free ligands. MnL2 complex showed predominant activity when compared to the other complexes with an IC50 value of 2.6 ± 0.11 μg/ml against Hep-G2, and against MCF-7 the IC50 value was 3.0 ± 0.2 μg/ml which is less than the standard drug cisplatin (4.0 μg/ml). UV-vis electronic spectrum and gel electrophoresis techniques have been used to investigate the compounds' affinity to bind and cleavage CT-DNA. The interaction's binding constants, or Kb, have been identified, and it was discovered that the new complexes' binding affinities are in the order of FeL1 > MnL2 > CrL2 > CrL1, and the binding mechanism has been suggested. To assess the kind of binding and binding affinity of the investigated drugs with human DNA, a molecular docking study was carried out (PDB:1bna). The acquired results supported the intercalation binding mechanism proposed in the experimental part and revealed that complexes may be inserted into the DNA molecule to stop DNA replication. According to ADMET data, the synthesized compounds have a high bioavailability profile and their physicochemical and pharmacological features remained within Lipinski's RO5 predicted limitations.
Collapse
Affiliation(s)
- Laila H Abdel-Rahman
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82534, Egypt.
| | - Amani A Abdelghani
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Abeer A AlObaid
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Doaa Abou El-Ezz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo, Egypt
| | - Ismail Warad
- Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Mohamed R Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ehab M Abdalla
- Chemistry Department, Faculty of Science, New Valley University, Alkharga, 72511, Egypt
| |
Collapse
|
3
|
Kapoor A, Pratibha, Rajput JK. Solar light photocatalytic activity of CuO/TiO2 mixed oxide derived from conjugated azomethine metal complex for degradation of food colorants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Polymer-supported first-row transition metal schiff base complexes: Efficient catalysts for epoxidation of alkenes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Díaz-Sánchez M, Delgado-Álvarez PN, Gómez IJ, Díaz-García D, Prashar S, Gómez-Ruiz S. Modulation of the photocatalytic activity and crystallinity of F-TiO 2 nanoparticles by using green natural carboxylic acids. CrystEngComm 2022. [DOI: 10.1039/d2ce00699e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrareactive F-doped mesoporous TiO2 nanoparticles with potential environmental applications have been synthesized using green natural carboxylic acids.
Collapse
Affiliation(s)
- Miguel Díaz-Sánchez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Paula N. Delgado-Álvarez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
6
|
Mamontova E, Favier I, Pla D, Gómez M. Organometallic interactions between metal nanoparticles and carbon-based molecules: A surface reactivity rationale. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Construction of Ag3PO4/TiO2/C with p-n heterojunction using Shiff base-Ti complex as precursor: Preparation, performance and mechanism. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Deghadi RG, Elsharkawy AE, Ashmawy AM, Mohamed GG. Can One Novel Series of Transition Metal Complexes of Oxy-dianiline Schiff Base Afford Advances in Both Biological Inorganic Chemistry and Materials Science? COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1962310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Reem G. Deghadi
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Ahmed E. Elsharkawy
- Chemical Treatment Department, Qarun Petroleum Company, 1160, Cairo, Maadi, Egypt
| | - Ashraf M. Ashmawy
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, 11884, Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
9
|
Fabrication of Nanoreactors Based on End-Functionalized Polymethacrylate and Their Catalysis Application. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01599-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Crystal Structure and Hirshfeld Surface Analysis of Bis(Triethanolamine)Nickel(II) Dinitrate Complex and a Revelation of Its Characteristics via Spectroscopic, Electrochemical and DFT Studies Towards a Promising Precursor for Metal Oxides Synthesis. CRYSTALS 2020. [DOI: 10.3390/cryst10060474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal complexes with chelating ligands are known as promising precursors for the synthesis of targeted metal oxides via thermal decomposition pathways. Triethanolamine (TEA) is a versatile ligand possessing a variety of coordination modes to metal ions. Understanding the crystal structure is beneficial for the rational design of the metal complex precursors. Herein, a bis(triethanolamine)nickel (II) dinitrate (named as Ni-TEA) crystal was synthesized and thoroughly investigated. X-ray crystallography revealed that Ni(II) ions adopt a distorted octahedral geometry surrounded by two neutral TEA ligands via two N and four O coordinates. Hirshfeld surface analysis indicated the major contribution of the intermolecular hydrogen-bonding between —OH groups of TEA in the crystal packing. Moreover, several O–H stretching peaks in Fourier transformed infrared spectroscopy (FTIR) spectra emphasizes the various chemical environments of —OH groups due to the formation of the hydrogen-bonding framework. The Density-functional theory (DFT) calculation revealed the electronic properties of the crystal. Furthermore, the Ni-TEA complex is presumably useful for metal oxide synthesis via thermal decomposition at a moderate temperature (380 °C). Cyclic voltammetry indicated the possible oxidative reaction of the Ni-TEA complex at a lower potential than nickel(II) nitrate and TEA ligand, highlighting its promising utility for the synthesis of mixed valence oxides such as spinel structures.
Collapse
|