1
|
Reactivity of a nitrosyl ruthenium complex and its potential impact on the fate of DNA - An in vitro investigation. J Inorg Biochem 2023; 238:112052. [PMID: 36334365 DOI: 10.1016/j.jinorgbio.2022.112052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The role of metal complexes on facing DNA has been a topic of major interest. However, metallonitrosyl compounds have been poorly investigated regarding their reactivities and interaction with DNA. A nitrosyl compound, cis-[Ru(bpy)2(SO3)(NO)](PF6)(A), showed a variety of promising biological activities catching our attention. Here, we carried out a series of studies involving the interaction and damage of DNA mediated by the metal complex A and its final product after NO release, cis-[Ru(bpy)2(SO3)(H2O](B). The fate of DNA with these metal complexes was investigated upon light or chemical stimuli using electrophoresis, electronic absorption spectroscopy, circular dichroism, size-exclusion resin, mass spectrometry, electron spin resonance (ESR) and viscometry. Since many biological disorders involve the production of oxidizing species, it is important to evaluate the reactivity of these compounds under such conditions as well. Indeed, the metal complex B exhibited important reactivity with H2O2 enabling DNA degradation, with detection of an unusual oxygenated intermediate. ESR spectroscopy detected mainly the DMPO-OOH adduct, which only emerges if H2O2 and O2 are present together. This result indicated HOO• as a key radical likely involved in DNA damage as supported by agarose gel electrophoresis. Notably, the nitrosyl ruthenium complex did not show evidence of direct DNA damage. However, its aqua product should be carefully considered as potentially harmful to DNA deserving further in vivo studies to better address any genotoxicity.
Collapse
|
2
|
Mohammad M, Saha I, Pal K, Karmakar P, Pandya P, Gazi HAR, Islam MM. A comparison on the biochemical activities of Fluorescein disodium, Rose Bengal and Rhodamine 101 in the light of DNA binding, antimicrobial and cytotoxic study. J Biomol Struct Dyn 2022; 40:9848-9859. [PMID: 34121614 DOI: 10.1080/07391102.2021.1936180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biochemical activities of Fluorescein, Rose Bengal and Rhodamine 101 were studied by DNA binding, antibacterial and cytotoxic studies. DNA binding studies were done using spectroscopic, thermodynamic and molecular modeling techniques. Antibacterial activities were investigated against a gram-negative bacteria Escherichia coli and a gram-positive bacteria Staphylococcus aureus. Cytotoxic activities were studied against Wi-38 cell line. We observed these dyes bound to minor groove of DNA and structural diversity of dyes affect the phenomenon. No significant antibacterial and cytotoxic activities of these dyes were found in our observations.
Collapse
Affiliation(s)
- Mukti Mohammad
- Department of Chemistry, Aliah University, Kolkata, India
| | - Ishita Saha
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Kunal Pal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | | | | |
Collapse
|
3
|
Ranjitha N, Krishnamurthy G, Bhojya Naik H, Pari M, Afroz L, Sumadevi K, Manjunatha M. Structural elucidation, voltammetric detection of dopamine, molecular docking and biological inspection of novel 4-aminoantipyrine derived Schiff bases in Co (II), Ni (II) and Cu (II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Electrochemical determination of glucose and H2O2 using Co(II), Ni(II), Cu(II) complexes of novel 2-(1,3-benzothiazol-2-ylamino)–N-(5-chloro-2-hydroxyphenyl)acetamide: Synthesis, structural characterization, antimicrobial, anticancer activity and docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Masoud MS, Hemdan SS, Elsamra RMI. Synthesis, Ligating Properties, Thermal Behavior, Computational and Biological Studies of Some Azo-transition Metal Complexes. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractSynthesis of new Fe(III), Co(II), Ni(II), and Cu(II) complexes of two azo ligands; 1-(phenyldiazenyl) naphthalene-2-ol (sudan orange R, HL1), and sodium 2-hydroxy-5-[(E)-(4-nitrophenyl) diazenyl]benzoate (alizarin yellow GG, HL2) have been reported. Stoichiometries of 1:2 and 1:3 (M:L) of the synthesized complexes were approved by total-reflection X-ray fluorescence technique (TXRF) and by elemental analyses. The geometry of complexes (octahedral and square planar) was typified by various spectroscopic, thermal, and magnetic techniques. The ESR spectroscopy showed that Cu(II) complexes are of different isotropic and rhombic symmetries with the existence of Cu–Cu ions interaction. TGA, DTA, and DSC analyses supported the multi-stage thermal decomposition mechanisms, where the thermal breakdown is ended by the formation of metal oxide in most cases. Moreover, chemical reactivity modeling using the density functional theory (DFT) method with the B3LYP/6–31 basis set, showed that metal complexes are more biologically active than their precursor ligands. The calculated lipophilicity character for metal complexes is in the range of 33.8–37.5 eV. Docking results revealed high scoring energy for [Fe(HL2)3].H2O complex and moderate inhibition strength of [Cu(L1)2].H2O complex versus 1bqb, 3t88, and 4esw proteins. Ultimately, the extent of biological effectiveness was endorsed experimentally against four microbial strains. The results are guidelines for toxicological investigations.
Graphical Abstract
Collapse
|
6
|
El‐Nahass MN, Bakr EA, El‐Gamil MM, Ibrahim SA. Synthesis, characterization and multifunctional applications of novel metal complexes based on thiazolylazo dye. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marwa N. El‐Nahass
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Eman A. Bakr
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Mohammed M. El‐Gamil
- Department of Toxic and Narcotic Drug, Forensic Medicine Mansoura Laboratory, Medico legal Organization, Ministry of Justice Egypt
| | - Seham A. Ibrahim
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
7
|
Kirthan B, Prabhakara M, Bhojya naik H, Viswanath R, Amith Nayak P. Optoelectronic, photocatalytic and biological studies of mixed ligand Cd(II) complex and its fabricated CdO nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Alsaedi S, Babgi BA, Abdellatif MH, Emwas AH, Jaremko M, Humphrey MG, Hussien MA. Effect of Net Charge on DNA-Binding, Protein-Binding and Anticancer Properties of Copper(I) Phosphine-Diimine Complexes. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02063-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe syntheses of [Cu(PPh3)2(L)]NO3 and [Cu(PPh3)2(L-SO3Na)]NO3 were achieved through the reaction of Cu(PPh3)2NO3 and equimolar amount of the ligands (L = 5,6-diphenyl-3-[2-pyridyl]-1,2,4-triazine; LSO3Na = 5,6-diphenyl-3-[2-pyridyl]-1,2,4-triazine-4,4′-disulfonic acid disodium salt). The complexes were characterized by NMR and IR spectroscopy and mass spectrometry. The compounds exhibit similar absorption and emission spectra, suggesting a similar electronic structure. Ct-DNA binding studies show the strong influence of the net charge as Cu-L (positively charged) is able to bind to ct-DNA while Cu-LSO3Na (negatively charged) is not. The net charge of the complexes affects the thermodynamic and kinetic binding parameters toward human serum albumin. HSA-binding of the complexes was further investigated by molecular docking, revealing different binding sites on the HSA protein as a function of the net charge. The different anticancer activities of the complexes towards ovcar-3 and hope-62 cancer cell lines are suggestive of a role for the overall charge of the complexes. Interaction with the DNA is not the major mechanism for this class of complexes. The overall net charge of the pharmacophore (anticancer agent) should be a key consideration in the design of anticancer metal complexes.
Collapse
|
9
|
Jalageri MD, Nagaraja A, Puttaiahgowda YM. Piperazine based antimicrobial polymers: a review. RSC Adv 2021; 11:15213-15230. [PMID: 35424074 PMCID: PMC8698587 DOI: 10.1039/d1ra00341k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial infections are a life threatening concern in several areas, which include the biomedical sector, healthcare products, water purification systems, and food packaging. Polymers with low molecular weight bioactive agents or disinfectants help the scientific community to reduce the lethality rate caused by pathogenic microbes. Antimicrobial polymeric approach is one of the advanced approaches made by researchers in concern with the problems associated with small molecules that restrict their applications in broad spectrum. History reveals the synthesis of numerous antimicrobial polymers using various antimicrobial agents but lacks the use of piperazine molecule, which is of pharmaceutical importance. This review gives an insight into the current and future perspective for the development of piperazine-based antimicrobial polymers.
Collapse
Affiliation(s)
- Manohara Dhulappa Jalageri
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576 104 India
| | - Akshatha Nagaraja
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576 104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education Manipal 576 104 India
| |
Collapse
|
10
|
Mohammad M, Al Rasid Gazi H, Pandav K, Pandya P, Islam MM. Evidence for Dual Site Binding of Nile Blue A toward DNA: Spectroscopic, Thermodynamic, and Molecular Modeling Studies. ACS OMEGA 2021; 6:2613-2625. [PMID: 33553879 PMCID: PMC7859944 DOI: 10.1021/acsomega.0c04775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 05/31/2023]
Abstract
Binding of Nile Blue (NB) with calf thymus DNA has been studied using molecular modeling, spectroscopic, and thermodynamic techniques. Our study revealed that NB binds to the DNA helix by two types of modes (groove binding and intercalation) simultaneously. The thermodynamic study showed that the overall binding free energy is a combination of several negative and positive free energy changes. The binding was favored by negative enthalpy and positive entropy changes (due to the release of water from the DNA helix). The docking study validated all experimental evidence and showed that NB binds to a DNA minor groove at low concentrations and switches to intercalation mode at higher concentrations.
Collapse
Affiliation(s)
- Mukti Mohammad
- Department
of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700 160, India
| | - Harun Al Rasid Gazi
- Department
of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700 160, India
| | - Kumud Pandav
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, India
| | - Prateek Pandya
- Amity
Institute of Forensic Sciences, Amity University, Noida 201313, Uttar Pradesh, India
| | - Md. Maidul Islam
- Department
of Chemistry, Aliah University, Action Area IIA/27, New Town, Kolkata, West Bengal 700 160, India
| |
Collapse
|
11
|
Venugopal N, Krishnamurthy G, Bhojyanaik HS, Madhukar Naik M, Sunilkumar N. Synthesis, characterization, and biological activity of Cu(II) and Co(II) complexes of novel N 1,N 2-bis(4-methyl quinolin-2-yl)benzene-1,2-diamine: CuO and CoO nanoparticles derived from their metal complexes for photocatalytic activity. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1814337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- N. Venugopal
- Department of Chemistry, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India
| | - G. Krishnamurthy
- Department of Chemistry, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India
| | - H. S. Bhojyanaik
- Department of Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, India
| | - M. Madhukar Naik
- Department of Chemistry MVJ College of Engineering, Banglore-560067
| | - N. Sunilkumar
- Department of Chemistry, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India
| |
Collapse
|
12
|
Synthesis, Characterization, DFT Studies and Biological Activity of Ru(III), La(III) and Ce(III) Triphenylphosphine Complexes Containing 2-Aminothiazole and 2-Aminotriazole. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01492-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|