1
|
Konwar K, Chaturvedi A, Chakraborty R, Sharma P, Kumar D, Kaushik SD, Babu PD, Mukhopadhyay R, Lodha S, Sen D, Deb P. Interacting Trimagnetic Ensembles for Enhanced Magnetic Resonance Transverse Relaxivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15281-15292. [PMID: 38989856 DOI: 10.1021/acs.langmuir.4c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An ensemble of nanosystems can be considered to improve magnetic resonance imaging (MRI) transverse relaxivity. Herein, an interacting superparamagnetic competing structure of an isotropic-anisotropic trimagnetic hybrid nanosystem, γ-Fe2O3@δ-MnO2@NiFe2O4, is considered for MRI relaxivity exploration. The interacting superparamagnetic system reveals fascinating dynamic magnetic behavior, where flower-shaped two-dimensional flakes are decorated over nanoparticles. The hybrid nanosystem exhibits modulated shape anisotropy with spin blocking and energy barrier broadening, which help in achieving faster MR transverse relaxivity. The hierarchical architecture ensemble of the trimagnetic landscape shows effective MR transverse relaxivity with a transverse (r2)/longitudinal (r1) relaxivity of 61.5 and potential cell viability. The competing trimagnetic system with regulated activation energy is found to be the underlying reason for such signal enhancement in MRI contrast efficiency. Hence, this study displays a novel pathway correlating MR transverse relaxivity with dynamic magnetic behavior and competing landscape of hierarchical trimagnetic ensembles.
Collapse
Affiliation(s)
- Korobi Konwar
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| | | | - Rituraj Chakraborty
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur 784028, India
| | - Pooja Sharma
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre, Mumbai Centre, R-5 Shed, Mumbai 400085, India
| | - Peram Delli Babu
- UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre, Mumbai Centre, R-5 Shed, Mumbai 400085, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur 784028, India
| | - Saurabh Lodha
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| |
Collapse
|
2
|
Kumar S, Ahmed F, Shaalan NM, Arshi N, Dalela S, Chae KH. Investigations of Structural, Magnetic, and Electrochemical Properties of NiFe 2O 4 Nanoparticles as Electrode Materials for Supercapacitor Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4328. [PMID: 37374513 DOI: 10.3390/ma16124328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Magnetic nanoparticles of NiFe2O4 were successfully prepared by utilizing the sol-gel techniques. The prepared samples were investigated through various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), dielectric spectroscopy, DC magnetization and electrochemical measurements. XRD data analysed using Rietveld refinement procedure inferred that NiFe2O4 nanoparticles displayed a single-phase nature with face-centred cubic crystallinity with space group Fd-3m. Average crystallite size estimated using the XRD patterns was observed to be ~10 nm. The ring pattern observed in the selected area electron diffraction pattern (SAED) also confirmed the single-phase formation in NiFe2O4 nanoparticles. TEM micrographs confirmed the uniformly distributed nanoparticles with spherical shape and an average particle size of 9.7 nm. Raman spectroscopy showed characteristic bands corresponding to NiFe2O4 with a shift of the A1g mode, which may be due to possible development of oxygen vacancies. Dielectric constant, measured at different temperatures, increased with temperature and decreased with increase in frequency at all temperatures. The Havrilliak-Negami model used to study the dielectric spectroscopy indicated that a NiFe2O4 nanoparticles display non-Debye type relaxation. Jonscher's power law was utilized for the calculation of the exponent and DC conductivity. The exponent values clearly demonstrated the non-ohmic behaviour of NiFe2O4 nanoparticles. The dielectric constant of the nanoparticles was found to be >300, showing a normal dispersive behaviour. AC conductivity showed an increase with the rise in temperature with the highest value of 3.4 × 10-9 S/cm at 323 K. The M-H curves revealed the ferromagnetic behaviour of a NiFe2O4 nanoparticle. The ZFC and FC studies suggested a blocking temperature of ~64 K. The saturation of magnetization determined using the law of approach to saturation was ~61.4 emu/g at 10 K, corresponding to the magnetic anisotropy ~2.9 × 104 erg/cm3. Electrochemical studies showed that a specific capacitance of ~600 F g-1 was observed from the cyclic voltammetry and galvanostatic charge-discharge, which suggested its utilization as a potential electrode for supercapacitor applications.
Collapse
Affiliation(s)
- Shalendra Kumar
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Physics, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Nagih M Shaalan
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Nishat Arshi
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Saurabh Dalela
- Department of Pure & Applied Physics, University of Kota, Kota, Rajasthan 324005, India
| | - Keun Hwa Chae
- Advanced Analysis & Data Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
Altınışık H, Getiren B, Çıplak Z, Soysal F, Yıldız N. Energy Storage Performance of Nitrogen Doped Reduced Graphene Oxide/Co-Doped Polyaniline Nanocomposites. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02456-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
The Mechanical, Dielectric, and EMI Shielding Properties of Nickel Ferrite (NiF)/Graphene (Gr)-Doped Epoxy Composites. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02419-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Amara U, Mahmood K, Awais M, Khalid M, Nasir M, Riaz S, Hayat A, Nawaz MH. Nickel -doped iron oxide nanoparticle-conjugated porphyrin interface (porphyrin/Fe 2O 3@Ni) for the non-enzymatic detection of dopamine from lacrimal fluid. Dalton Trans 2022; 51:5098-5107. [PMID: 35266502 DOI: 10.1039/d2dt00074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we synthesized nickel (Ni)-doped iron oxide nanoparticles (Fe2O3). The presence of the dopant afforded anchoring sites for the porphyrinic hetero cavity of 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin to produce the porphyrin/Fe2O3@Ni composite. The crystalline structure and morphology of porphyrin/Fe2O3@Ni were assessed using various tools including Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy. Porphyrin/Fe2O3@Ni has proven to be an excellent dopamine (DA) probe material with good selectivity, reproducibility, stability and reliability owing to its clever morphology, which induces numerous active sites along with good active surface area. It consequently provides good accessibility to DA and allows for the smooth tunneling of electrons between the analyte and sensing interface. Meanwhile, the porphyrin molecules provide good carbon-based resilient support, inhibit the leaching of the electrode matrix and enhance electron shuttling, resulting in the robust oxidation of DA with amplified transduction signals. The designed porphyrin/Fe2O3@Ni interface showed a low detection limit (1.2 nm) with good sensitivity (1.2 nM) in the linear bounds of 10 μM to 3500 μM. Additionally, the interface was employed successfully to analyze DA from lacrimal fluid with good percentage recoveries (99.8% to 100.1%). We anticipate that such a design will simplify the in vitro screening of DA in rarely studied tear samples with sensitivity and selectivity.
Collapse
Affiliation(s)
- Umay Amara
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan. .,Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Awais
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Khalid
- Department of Basic Sciences & Humanities, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| |
Collapse
|
6
|
|
7
|
Facile Fabrication of Binder-Free CoZn LDH/CFP Electrode with Enhanced Capacitive Properties for Asymmetric Supercapacitor. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|