1
|
Xie J, Liang J, Lei J, Xiao Y, Luo F, Hu B. Highly Sensitive and Selective Detection of Uranyl Ions Based on a Tb 3+-Functionalized MOF via Competitive Host-Guest Coordination. Inorg Chem 2025; 64:3616-3625. [PMID: 39933156 DOI: 10.1021/acs.inorgchem.4c05586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Owing to the rapid development of the nuclear industry, uranium has become a global environmental contaminant due to its radiotoxicity and chemotoxicity, posing significant threats to human health and ecological safety. Although various instrumental and chemical analytical methods have been developed for uranyl ion detection in aquatic environments, searching for new sensors with high stability, sensitivity, and selectivity remains a challenge. In this study, a luminescent Zr-based metal-organic framework (MOF), designated as Tb@UiO-66-(COOH)2, was successfully synthesized utilizing a postsynthetic exchange (PSE) method along with Tb3+ ion doping for uranyl ion detection. Interestingly, the presence of UO22+ ions causes a replacement of guest ions (Tb3+) in the sensor via a competitive host-guest interaction, leading to significant luminescence quenching. The attenuation of the luminescence intensity of Tb@UiO-66-(COOH)2 exhibits an excellent linear relationship with UO22+ ion concentrations within a wide range of 0-2.52 μM. Notably, Tb@UiO-66-(COOH)2 demonstrates an unprecedentedly high detection sensitivity (Ksv = 2.16 × 105 M-1) and an extremely low limit of detection (LOD) down to 8.03 nM (1.91 ppb) in deionized water. More importantly, Tb@UiO-66-(COOH)2 can achieve high selectivity and efficient detection performance, even in the presence of significant excesses of competing ions. The values of Ksv were determined to be 2.10 × 105 M-1 in Xie'ao Lake water and 3.05 × 105 M-1 in seawater; the values of LOD were determined to be 8.26 nM (1.96 ppb) in Xie'ao Lake water and 5.68 nM (1.35 ppb) in seawater. To the best of our knowledge, this is the first instance of introducing a competitive host-guest coordination strategy into a MOF-based chemical sensor to achieve high-performance uranyl ion detection. Hence, the present work offers a novel idea for building functional MOFs for uranyl ion detection in aqueous solutions.
Collapse
Affiliation(s)
- Jian Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Jinpeng Liang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Ji Lei
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Yiheng Xiao
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| | - Feng Luo
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Baowei Hu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
2
|
Cheng R, Wan Y, Mao X, Wan H, Liu F, Guo L, Zhang B. Regulating the defects of MIL-101(Cr) for the efficient and simultaneous determination of eleven plant growth regulators in fresh fruit juice. Food Chem 2024; 444:138666. [PMID: 38341916 DOI: 10.1016/j.foodchem.2024.138666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
This work presents an efficient sorbent for plant growth regulators (PGRs) by regulating the defects of a metal-organic framework MIL-101(Cr). Using the regulated MIL-101(Cr), we developed a simple and effective method for the simultaneous determination of eleven PGRs in fresh fruit juice. The extraction conditions were optimized by an orthogonal array design. Under optimal conditions, the method showed a satisfactory limit of detection (0.1-1.2 ng/g), recovery rates (83.4-110.2 %), and precision (2.9-18.0 % for intra-day and 2.7-10.8 % for inter-day), as well as a greatly suppressed matrix effect. Notably, regulating the defects significantly enhanced the desorption of PGRs on MIL-101(Cr). The sorbent didn't need to be destroyed to release the adsorbed PGRs and could be reused at least 6 times. Furthermore, the defects of MIL-101(Cr) and interactions between the sorbent and PGRs were studied by TGA, ATR-IR, XPS, NH3-TPD and UV-Vis DRS.
Collapse
Affiliation(s)
- Rui Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yiqun Wan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, People's Republic of China.
| | - Xuejin Mao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China.
| | - Hao Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Fan Liu
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, People's Republic of China
| | - Lan Guo
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, People's Republic of China
| | - Bingzhen Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
3
|
Eads CN, Hu T, Tian Y, Kisslinger K, Tenney SA, Head AR. Active site identification and CO oxidation in UiO-66-XX thin films. NANOTECHNOLOGY 2023; 34:205702. [PMID: 36801839 DOI: 10.1088/1361-6528/acbcd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) offer an intrinsically porous and chemically tunable platform for gas adsorption, separation, and catalysis. We investigate thin film derivatives of the well-studied Zr-O based MOF powders to understand their adsorption properties and reactivity with their adaption to thin films, involving diverse functionality with the incorporation of different linker groups and the inclusion of embedded metal nanoparticles: UiO-66, UiO-66-NH2, and Pt@UiO-66-NH2. Using transflectance IR spectroscopy, we determine the active sites in each film upon consideration of the acid-base properties of the adsorption sites and guest species, and perform metal-based catalysis with CO oxidation of a Pt@UiO-66-NH2film. Our study shows how surface science characterization techniques can be used to characterize the reactivity and the chemical and electronic structure of MOFs.
Collapse
Affiliation(s)
- Calley N Eads
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Tianhao Hu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Yi Tian
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Samuel A Tenney
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| |
Collapse
|
4
|
Vizuet JP, Mortensen ML, Lewis AL, Wunch MA, Firouzi HR, McCandless GT, Balkus KJ. Fluoro-Bridged Clusters in Rare-Earth Metal-Organic Frameworks. J Am Chem Soc 2021; 143:17995-18000. [PMID: 34677056 DOI: 10.1021/jacs.1c10493] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The modulator 2-fluorobenzoic acid (2-fba) is widely used to prepare RE clusters in metal-organic frameworks (MOFs). In contrast to known RE MOF structures containing hydroxide bridging groups, we report for the first time the possible presence of fluoro bridging groups in RE MOFs. In this report we discuss the synthesis of a holmium-UiO-66 analogue as well as a novel holmium MOF, where evidence of fluorinated clusters is observed. The mechanism of fluorine extraction from 2-fba is discussed as well as the implications that these results have for previously reported RE MOF structures.
Collapse
Affiliation(s)
- Juan P Vizuet
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Marie L Mortensen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Abigail L Lewis
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Melissa A Wunch
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Hamid R Firouzi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Gregory T McCandless
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| |
Collapse
|
5
|
Influence of pretreatment conditions on low-temperature CO oxidation over Pd supported UiO-66 catalysts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111633] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Wang Q, Gu C, Fu Y, Liu L, Xie Y. Ultrasensitive Electrochemical Sensor for Luteolin Based on Zirconium Metal-Organic Framework UiO-66/Reduced Graphene Oxide Composite Modified Glass Carbon Electrode. Molecules 2020; 25:E4557. [PMID: 33028038 PMCID: PMC7582780 DOI: 10.3390/molecules25194557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Luteolin is a kind of natural flavonoid with many bioactivities purified from a variety of natural herbs, fruits and vegetables. Electrochemical sensing has become an outstanding technology for the detection of luteolin in low concentration due to its fast response, easy operation and low cost. In this study, electroreduced graphene oxide (ErGO) and UiO-66 were successively modified onto a glassy carbon electrode (UiO-66/ErGO/GCE) and applied to the detection of luteolin. A combination of UiO-66 and ErGO showed the highest promotion in the oxidation peak current for luteolin compared with those of a single component. The factors affecting the electrochemical behavior of UiO-66/ErGO/GCE were evaluated and optimized including pH, accumulation potential, accumulation time and scan rate. Under optimum conditions, UiO-66/ErGO/GCE showed satisfactory linearity (from 0.001 μM to 20 μM), reproducibility and storage stability. The detection limit of UiO-66/ErGO/GCE reached 0.75 nM of luteolin and was suitable for testing real samples. Stable detection could be provided at least eight times by one modified electrode, which guaranteed the practicability of the proposed sensor. The fabricated UiO-66/ErGO/GCE showed a rapid electrochemical response and low consumption of materials in the detection of luteolin. It also showed satisfactory accuracy for real samples with good recovery. In conclusion, the modification using MOFs and graphene materials made the electrode advanced property in electrochemical sensing of natural active compounds.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chunmeng Gu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
| | - Yafen Fu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
| | - Yixi Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|