1
|
Xie K, Guo X, Li H, Liu F, Wang Q. WITHDRAWN: Gellan gum-cellulose hydrogel incorporating with graphene oxide and magnetic nanoparticles as a novel nanocatalyst for the synthesis of dihydropyrano derivatives. Int J Biol Macromol 2024:135315. [PMID: 39236959 DOI: 10.1016/j.ijbiomac.2024.135315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Kaizhong Xie
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China; Key Laboratory of Disaster Prevention, Mitigation and Engineering Safety, Guangxi University, Nanning, 530004, China
| | - Xiao Guo
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China; Key Laboratory of Disaster Prevention, Mitigation and Engineering Safety, Guangxi University, Nanning, 530004, China.
| | - Haoxu Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Fei Liu
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| | - Quanguo Wang
- College of Civil Engineering and Architecture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
2
|
Almajidi YQ, Abdullaev S, Haydar S, Al-Hetty HRAK, Ahmad I, Shafik SS, Alawadi AH, Alsalamy A, Bisht YS, Abbas HA. Magnetic nanocomposite based on chitosan-gelatin hydrogel embedded with copper oxide nanoparticles: A novel and promising catalyst for the synthesis of polyhydroquinoline derivatives. Int J Biol Macromol 2024; 263:130211. [PMID: 38423902 DOI: 10.1016/j.ijbiomac.2024.130211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Nanocatalysts are vital in several domains, such as chemical processes, energy generation, energy preservation, and environmental pollution mitigation. An experimental study was conducted at room temperature to evaluate the catalytic activity of the new gelatin-chitosan hydrogel/CuO/Fe3O4 nanocomposite in the asymmetric Hantzsch reaction. All components of the nanocomposite exhibit a synergistic effect as a Lewis acid, promote the reaction. Dimedone, ammonium acetate, ethyl acetoacetate, and other substituted aldehydes were used to synthesize diverse polyhydroquinoline derivatives. The nanocomposite exhibited exceptional efficacy (over 90 %) and durability (retaining 80 % of its original capacity after 5 cycles) as a catalyst in the one-pot asymmetric synthesis of polyhydroquinoline derivatives. Also, turnover numbers (TON) and turnover frequency (TOF) have been checked for catalyst (TON and TOF = 50,261 and 100,524 h-1) and products. The experiment demonstrated several benefits, such as exceptional product efficacy, rapid reaction time, functioning at ambient temperature without specific requirements, and effortless separation by the use of an external magnet after the reaction is finished. The results suggest the development of a magnetic nanocatalyst with exceptional performance. The composition of the Ge-CS hydrogel/CuO/Fe3O4 nanocomposite was thoroughly analyzed using several methods including FT-IR, XRD, FE-SEM, EDX, VSM, BET, and TGA. These analyses yielded useful information into the composition and characteristics of the nanocomposite, hence further enhancing the knowledge of its possible uses.
Collapse
Affiliation(s)
- Yasir Qasim Almajidi
- Baghdad College of Medical Sciences-department of pharmacy (pharmaceutics), Baghdad, Iraq
| | - Sherzod Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University named after Nizami, Tashkent, Uzbekistan.
| | - Sami Haydar
- Faculty of Mechanics and Design, Moscow Automobile and Road Construction State Technical University, Moscow, Russia; Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Hussein Riyadh Abdul Kareem Al-Hetty
- Center Of Desert, University Of Anbar, Ramadi, Anbar, Iraq; Department of Biology, College of Education for Pure Sciences, University Of Anbar, Ramadi 31001, Anbar, Iraq.
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - Yashwant Singh Bisht
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Hussein Abdullah Abbas
- College of Technical Engineering, National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
3
|
Wu Y, Wang N, Liu H, Cui R, Gu J, Sun R, Zhu Y, Gou L, Fan X, Li D, Wang D. Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases. J Colloid Interface Sci 2023; 629:916-925. [DOI: 10.1016/j.jcis.2022.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022]
|
4
|
Kahraman E, Erdol Aydin N, Nasun-Saygili G. Optimization of 5-FU adsorption on gelatin incorporated graphene oxide nanocarrier and application for antitumor activity. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Graphene oxide reinforced hemostasis of gelatin sponge in noncompressible hemorrhage via synergistic effects. Colloids Surf B Biointerfaces 2022; 220:112891. [DOI: 10.1016/j.colsurfb.2022.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
|
6
|
Babamoradi J, Ghorbani-Vaghei R, Alavinia S. Enhanced reduction of nitrobenzene derivatives using reusable Ni nanoparticles supported on multi-layered poly(1,2-phenylenediamine)-coated layered double hydroxides. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently, nanomaterials with layered double hydroxide (LDH) cores have been the subject of intense research regarding their promising applications in organic synthesis. In this study, nitrobenzene reduction is investigated by designing and synthesizing a novel LDH-based heterogeneous catalyst containing a nickel-1,2-phenylenediamine complex. The Cu–Zn–Al LDH was functionalized with copolymer bearing a glycidyl methacrylate (GMA) linkage that makes it suitable for grafting with 1,2-phenylenediamine. Overall, the synthesized LDH@MPS-GMA-PDA-Ni was found to be a highly efficient heterogeneous nanocatalyst that can catalyze nitroarene reduction with high yields under mild conditions.
Collapse
Affiliation(s)
- Jamshid Babamoradi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
8
|
Efficient Synthesis of Multiply Substituted Triazines Using GO@N-Ligand-Cu Nano-Composite as a Novel Catalyst. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|