1
|
Ahmed J, Ahamad T, Alhokbany N, Majeed Khan MA, Arunachalam P, Amer MS, Alotaibi RM, Alshehri SM. Reduced graphene oxide encapsulated perovskite-type lanthanum cobalt oxide nanoparticles for efficient electrolysis of water to oxygen reactions (OER/ORR). J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
2
|
Paul A, Radinović K, Hazra S, Mladenović D, Šljukić B, Khan RA, Guedes da Silva MFC, Pombeiro AJL. Electrocatalytic Behavior of an Amide Functionalized Mn(II) Coordination Polymer on ORR, OER and HER. Molecules 2022; 27:7323. [PMID: 36364154 PMCID: PMC9655238 DOI: 10.3390/molecules27217323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 10/29/2023] Open
Abstract
The new 3D coordination polymer (CP) [Mn(L)(HCOO)]n (Mn-CP) [L = 4-(pyridin-4-ylcarbamoyl)benzoate] was synthesised via a hydrothermal reaction using the pyridyl amide functionalized benzoic acid HL. It was characterized by elemental, FT-IR spectroscopy, single-crystal and powder X-ray diffraction (PXRD) analyses. Its structural features were disclosed by single-crystal X-ray diffraction analysis, which revealed a 3D structure with the monoclinic space group P21/c. Its performance as an electrocatalyst for oxygen reduction (ORR), oxygen evolution (OER), and hydrogen evolution (HER) reactions was tested in both acidic (0.5 M H2SO4) and alkaline (0.1 M KOH) media. A distinct reduction peak was observed at 0.53 V vs. RHE in 0.1 M KOH, which corresponds to the oxygen reduction, thus clearly demonstrating the material's activity for the ORR. Tafel analysis revealed a Tafel slope of 101 mV dec-1 with mixed kinetics of 2e- and 4e- pathways indicated by the Koutecky-Levich analysis. Conversely, the ORR peak was not present in 0.5 M H2SO4 indicating no activity of Mn-CP for this reaction in acidic media. In addition, Mn-CP demonstrated a noteworthy activity toward OER and HER in acidic media, in contrast to what was observed in 0.1 M KOH.
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Kristina Radinović
- University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Susanta Hazra
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Dušan Mladenović
- University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Biljana Šljukić
- University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
- Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Maria Fátima C. Guedes da Silva
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutura, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
3
|
Madakannu I, Patil I, Kakade B, Datta KKR. Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1020-1029. [PMID: 36247528 PMCID: PMC9531560 DOI: 10.3762/bjnano.13.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Silver-based electrocatalysts as promising substitutes for platinum materials for cathodic oxygen electroreduction have been extensively researched. Electrocatalytic enhancement of the Ag nanoarchitectonics can be obtained via support structures and amalgamating Ag with one or two additional metals. The work presented here deals with a facile microwave-assisted synthesis to produce bimetallic Ag-Cu and Ag-Co (1:1) oxide nanoparticles (NPs) and trimetallic AgCuCo (0.6:1.5:1.5, 2:1:1, and 6:1:1) oxide NPs supported on a reduced graphene oxide (rGO) matrix. Morphology, composition, and functional groups were methodically analysed using various microscopic and spectroscopic techniques. The as-prepared electrocatalysts were employed as cathode substrates for the oxygen reduction reaction (ORR) in alkaline medium. Varying the Ag fraction in copper cobalt oxide has a significant influence on the ORR activity. At a ratio of 2:1:1, AgCuCo oxide NPs on rGO displayed the best values for onset potential, half-wave potential, and limiting current density (J k) of 0.94 V vs RHE, 0.78 V, and 3.6 mA·cm-2, respectively, with an electrochemical active surface area of 66.92 m2·g-1 and a mass activity of 40.55 mA·mg-1. The optimum electrocatalyst shows considerable electrochemical stability over 10,000 cycles in 0.1 M KOH solution.
Collapse
Affiliation(s)
- Iyyappan Madakannu
- Functional Nanomaterials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
| | - Indrajit Patil
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
| | - Bhalchandra Kakade
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
| | - Kasibhatta Kumara Ramanatha Datta
- Functional Nanomaterials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Nanoarchitectonics, Method for Everything in Materials Science. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Mohanta YK, Biswas K, Rauta PR, Mishra AK, De D, Hashem A, Al-Arjani ABF, Alqarawi AA, Abd-Allah EF, Mahanta S, Mohanta TK. Development of Graphene Oxide Nanosheets as Potential Biomaterials in Cancer Therapeutics: An In-Vitro Study Against Breast Cancer Cell Line. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02046-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Chen G, Shrestha LK, Ariga K. Zero-to-Two Nanoarchitectonics: Fabrication of Two-Dimensional Materials from Zero-Dimensional Fullerene. Molecules 2021; 26:molecules26154636. [PMID: 34361787 PMCID: PMC8348140 DOI: 10.3390/molecules26154636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoarchitectonics of two-dimensional materials from zero-dimensional fullerenes is mainly introduced in this short review. Fullerenes are simple objects with mono-elemental (carbon) composition and zero-dimensional structure. However, fullerenes and their derivatives can create various types of two-dimensional materials. The exemplified approaches demonstrated fabrications of various two-dimensional materials including size-tunable hexagonal fullerene nanosheet, two-dimensional fullerene nano-mesh, van der Waals two-dimensional fullerene solid, fullerene/ferrocene hybrid hexagonal nanosheet, fullerene/cobalt porphyrin hybrid nanosheet, two-dimensional fullerene array in the supramolecular template, two-dimensional van der Waals supramolecular framework, supramolecular fullerene liquid crystal, frustrated layered self-assembly from two-dimensional nanosheet, and hierarchical zero-to-one-to-two dimensional fullerene assembly for cell culture.
Collapse
Affiliation(s)
- Guoping Chen
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan;
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan;
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan;
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan;
- Correspondence:
| |
Collapse
|
7
|
Nanoarchitectonics Can Save Our Planet: Nanoarchitectonics for Energy and Environment. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|