1
|
Hegde VN, Pradeep TM, Manju VV, Sandhya NC. MgO nanofiller reinforced biodegradable, flexible, tunable energy gap HPMC polymer composites for eco-friendly electronic applications. MATERIALS SCIENCE AND ENGINEERING: B 2024; 310:117775. [DOI: 10.1016/j.mseb.2024.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
|
2
|
Proniewicz E, Vijayan AM, Surma O, Szkudlarek A, Molenda M. Plant-Assisted Green Synthesis of MgO Nanoparticles as a Sustainable Material for Bone Regeneration: Spectroscopic Properties. Int J Mol Sci 2024; 25:4242. [PMID: 38673825 PMCID: PMC11050608 DOI: 10.3390/ijms25084242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This work is devoted to magnesium oxide (MgO) nanoparticles (NPs) for their use as additives for bone implants. Extracts from four different widely used plants, including Aloe vera, Echeveria elegans, Sansevieria trifasciata, and Sedum morganianum, were evaluated for their ability to facilitate the "green synthesis" of MgO nanoparticles. The thermal stability and decomposition behavior of the MgONPs were analyzed by thermogravimetric analysis (TGA). Structure characterization was performed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), and Raman scattering spectroscopy (RS). Morphology was studied by scanning electron microscopy (SEM). The photocatalytic activity of MgO nanoparticles was investigated based on the degradation of methyl orange (MeO) using UV-Vis spectroscopy. Surface-enhanced Raman scattering spectroscopy (SERS) was used to monitor the adsorption of L-phenylalanine (L-Phe) on the surface of MgONPs. The calculated enhancement factor (EF) is up to 102 orders of magnitude for MgO. This is the first work showing the SERS spectra of a chemical compound immobilized on the surface of MgO nanoparticles.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Krakow, 30-059 Krakow, Poland;
| | | | - Olga Surma
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (O.S.); (M.M.)
| | - Aleksandra Szkudlarek
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-055 Krakow, Poland;
| | - Marcin Molenda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (O.S.); (M.M.)
| |
Collapse
|
3
|
Kuchaiyaphum P, Chotichayapong C, Kajsanthia K, Saengsuwan N. Carboxymethyl cellulose/poly (vinyl alcohol) based active film incorporated with tamarind seed coat waste extract for food packaging application. Int J Biol Macromol 2024; 255:128203. [PMID: 37979741 DOI: 10.1016/j.ijbiomac.2023.128203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Incorporating a bioactive food waste extract into biodegradable polymers is a promising green approach to producing active films with antioxidant and antibacterial activity for food packaging. Active packaging films from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) incorporated with tamarind seed coat waste extract (TS) were prepared by solvent casting method using citric acid as a crosslinking agent. The effect of TS content on the film properties was determined by measuring the optical, morphology, mechanical, water vapor transmission rate (WVTR), antioxidant, and antimicrobial attributes. The CMC/PVA-TS films were also tested on fresh pork. The addition of TS did not significantly affect the film structure and WVTR but it improved the mechanical and UV barrier properties. The films possessed antioxidant and antimicrobial ability against bacteria (S. aureus and E. coli). Thus, CMC/PVA packaging was successfully prepared, and the incorporation of TS enhanced the antioxidant and antimicrobial properties of the film, which extended the shelf-life of fresh pork.
Collapse
Affiliation(s)
- Pusita Kuchaiyaphum
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
| | - Chatrachatchaya Chotichayapong
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Kanlayanee Kajsanthia
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Nikorn Saengsuwan
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
4
|
Hussain R, Batool SA, Aizaz A, Abbas M, Ur Rehman MA. Biodegradable Packaging Based on Poly(vinyl Alcohol) and Carboxymethyl Cellulose Films Incorporated with Ascorbic Acid for Food Packaging Applications. ACS OMEGA 2023; 8:42301-42310. [PMID: 38024767 PMCID: PMC10652830 DOI: 10.1021/acsomega.3c04397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Petroleum-based plastics are used as packaging materials because of their low cost and high availability; however, continuous use of these nondegradable materials especially in the food industry has led to environmental pollution. The present study aimed to synthesize antibacterial and biodegradable films based on natural biopolymers carboxymethyl cellulose (CMC), poly(vinyl alcohol) (PVA), and ascorbic acid (AA) cross-linked in the presence of glutaraldehyde (GA). The films were synthesized in two different concentrations, 60PVA:40CMC:AA and 70PVA:30CMC:AA with a fixed amount of AA. Films with smooth texture and overall uniform thickness were obtained. Fourier transform infrared spectroscopy (FTIR) confirmed the cross-linking between the aldehyde group of GA and hydroxyl of PVA through detection of acetal and ether bridges. The synthesized films were thermally stable in the temperature range of 180-300 °C; however, 70PVA:30CMC:AA showed higher weight loss in this range as compared to the 60PVA:40CMC:AA film. Soil burial test demonstrated that the 60PVA:40CMC:AA film was more degradable (71% at day 15) as compared to the 70PVA:30CMC:AA film (65% at day 15). The films exhibited excellent antimicrobial activity against Gram-positive staphylococcus aureus(inhibition zone of 21 mm) and Gram-negative Escherichia coli (inhibition zone of 15 mm). In comparison, the 60PVA:40CMC:AA film showed better results in terms of high mechanical strength, uniform morphology, higher soil burial degradation, and lower water vapor transmission rate. Therefore, the prepared film could be used as a promising candidate in the food packaging industry.
Collapse
Affiliation(s)
- Rabia Hussain
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, Islamabad Highway, Islamabad 44000, Pakistan
| | - Syeda Ammara Batool
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, Islamabad Highway, Islamabad 44000, Pakistan
| | - Aqsa Aizaz
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, Islamabad Highway, Islamabad 44000, Pakistan
| | - Mohamed Abbas
- Electrical
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department
of Materials Science & Engineering, Institute of Space Technology Islamabad, Islamabad Highway, Islamabad 44000, Pakistan
| |
Collapse
|
5
|
Dai H, Dai W, Hu Z, Zhang W, Zhang G, Guo R. Advanced Composites Inspired by Biological Structures and Functions in Nature: Architecture Design, Strengthening Mechanisms, and Mechanical-Functional Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207192. [PMID: 36935371 PMCID: PMC10190572 DOI: 10.1002/advs.202207192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The natural design and coupling of biological structures are the root of realizing the high strength, toughness, and unique functional properties of biomaterials. Advanced architecture design is applied to many materials, including metal materials, inorganic nonmetallic materials, polymer materials, and so on. To improve the performance of advanced materials, the designed architecture can be enhanced by bionics of biological structure, optimization of structural parameters, and coupling of multiple types of structures. Herein, the progress of structural materials is reviewed, the strengthening mechanisms of different types of structures are highlighted, and the impact of architecture design on the performance of advanced materials is discussed. Architecture design can improve the properties of materials at the micro level, such as mechanical, electrical, and thermal conductivity. The synergistic effect of structure makes traditional materials move toward advanced functional materials, thus enriching the macroproperties of materials. Finally, the challenges and opportunities of structural innovation of advanced materials in improving material properties are discussed.
Collapse
Affiliation(s)
- Hanqing Dai
- Academy for Engineering and TechnologyInstitute for Electric Light SourcesFudan UniversityShanghai200433China
| | - Wenqing Dai
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Zhe Hu
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Wanlu Zhang
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Guoqi Zhang
- Department of MicroelectronicsDelft University of TechnologyDelftCD 2628Netherlands
| | - Ruiqian Guo
- Academy for Engineering and TechnologyInstitute for Electric Light SourcesFudan UniversityShanghai200433China
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| |
Collapse
|
6
|
Aziz T, Haq F, Farid A, Kiran M, Faisal S, Ullah A, Ullah N, Bokhari A, Mubashir M, Chuah LF, Show PL. Challenges associated with cellulose composite material: Facet engineering and prospective. ENVIRONMENTAL RESEARCH 2023; 223:115429. [PMID: 36746207 DOI: 10.1016/j.envres.2023.115429] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Cellulose is the most abundant polysaccharide on earth. It has a large number of desirable properties. Its low toxicity makes it more useful for a variety of applications. Nowadays, its composites are used in most engineering fields. Composite consists of a polymer matrix and use as a reinforcing material. By reducing the cost of traditional fibers, it has an increasing demand for environment-friendly purposes. The use of these types of composites is inherent in moisture absorption with hindered natural fibers. This determines the reduction of polymer composite material. By appropriate chemical surface treatment of cellulose composite materials, the effect could be diminished. The most modern and advanced techniques and methods for the preparation of cellulose and polymer composites are discussed here. Cellulosic composites show a reinforcing effect on the polymer matrix as pointed out by mechanical characterization. Researchers tried their hard work to study different ways of converting various agricultural by-products into useful eco-friendly polymer composites for sustainable production. Cellulose plays building blocks, that are critical for polymer products and their engineering applications. The most common method used to prepare composites is in-situ polymerization. This help to increase the yields of cellulosic composites with a significant enhancement in thermal stability and mechanical properties. Recently, cellulose composites used as enhancing the incorporation of inorganic materials in multi-functional properties. Furthermore, we have summarized in this review the potential applications of cellulose composites in different fields like packaging, aerogels, hydrogels, and fibers.
Collapse
Affiliation(s)
- Tariq Aziz
- Westlake University, School of Engineering, Hangzhou, China
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan.
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan
| | - Mehwish Kiran
- Department of Horticulture, Faculty of Agriculture, Gomal University, D. I. Khan, 29050, Pakistan
| | - Shah Faisal
- Chemistry Department, University of Science and Technology Bannu, Pakistan
| | - Asmat Ullah
- Zhejiang Provincial Key Laboratory of Cancer, Life Science Institute, Zhejiang University, Hangzhou, 310058, China
| | - Naveed Ullah
- Institute of Chemical Sciences, Gomal University, D. I. Khan, 29050, Pakistan
| | - Awais Bokhari
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Mubashir
- Physical Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
7
|
Amaregouda Y, Kamanna K, Gasti T. Fabrication of intelligent/active films based on chitosan/polyvinyl alcohol matrices containing Jacaranda cuspidifolia anthocyanin for real-time monitoring of fish freshness. Int J Biol Macromol 2022; 218:799-815. [PMID: 35905759 DOI: 10.1016/j.ijbiomac.2022.07.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/13/2023]
Abstract
The present work describes the natural anthocyanin from Jacaranda cuspidifolia (JC) flower immobilized within a biopolymer matrix composed of chitosan (CS) and polyvinyl alcohol (PVA) gave novel intelligent/active packaging films (CPC). We introduced microwave irradiation to prepare polymeric composite films noticed faster mixing of the polymers and extract take place than the conventional method. The prepared composite films are characterized by various analytical and spectroscopic techniques. The smooth SEM images demonstrated CS/PVA matrix miscibility and compatibility with anthocyanin for the film formation. The addition of anthocyanin to the CS/PVA films significantly reduced UV-Vis light transmission, while causing a slight decrease in the films transparency. An increased anthocyanin concentration on polymer films showed improved oxygen permeability (77.09 %), moisture retention capacity (11.64 %), and water vapor transmission rate (43.10 %) substantially. Additionally, the prepared CPC smart films exhibited strong antioxidant (97.92 %) as well as antibacterial activities against common foodborne pathogens such as S. aureus, and E. coli. Furthermore, the prepared smart films demonstrated pink color in acidic, while grey to yellowish in basic solvent. Further, the color response of the freshness label was consistent with the spoilage Total Volatile Basic-Nitrogen (TVB-N) content determined in the fish samples with varied time period. The CPC smart films also showed promising application in terms of monitoring freshness of the fish fillets at room temperature. The obtained results suggested that, the prepared CPC smart films have potential to be used as quality indicator in the marine food packaging system.
Collapse
Affiliation(s)
- Yamanappagouda Amaregouda
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - Kantharaju Kamanna
- School of Basic Sciences, Department of Chemistry, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India.
| | - Tilak Gasti
- Department of Chemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
8
|
Intelligent pH-Sensitive Indicator Based on Chitosan@PVP Containing Extracted Anthocyanin and Reinforced with Sulfur Nanoparticles: Structure, Characteristic and Application in Food Packaging. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|