1
|
Beck RM, Voss RS, Jansa SA. Craniodental Morphology and Phylogeny of Marsupials. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.457.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robin M.D. Beck
- School of Science, Engineering and Environment University of Salford, U.K. School of Biological, Earth & Environmental Sciences University of New South Wales, Australia Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Sharon A. Jansa
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota
| |
Collapse
|
2
|
Eldridge MDB, Beck RMD, Croft DA, Travouillon KJ, Fox BJ. An emerging consensus in the evolution, phylogeny, and systematics of marsupials and their fossil relatives (Metatheria). J Mammal 2019. [DOI: 10.1093/jmammal/gyz018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Robin M D Beck
- School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Darin A Croft
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Barry J Fox
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Rico-Guevara A, Hurme KJ. Intrasexually selected weapons. Biol Rev Camb Philos Soc 2019; 94:60-101. [PMID: 29924496 DOI: 10.1111/brv.12436] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/24/2023]
Abstract
We propose a practical concept that distinguishes the particular kind of weaponry that has evolved to be used in combat between individuals of the same species and sex, which we term intrasexually selected weapons (ISWs). We present a treatise of ISWs in nature, aiming to understand their distinction and evolution from other secondary sex traits, including from 'sexually selected weapons', and from sexually dimorphic and monomorphic weaponry. We focus on the subset of secondary sex traits that are the result of same-sex combat, defined here as ISWs, provide not previously reported evolutionary patterns, and offer hypotheses to answer questions such as: why have only some species evolved weapons to fight for the opposite sex or breeding resources? We examined traits that seem to have evolved as ISWs in the entire animal phylogeny, restricting the classification of ISW to traits that are only present or enlarged in adults of one of the sexes, and are used as weapons during intrasexual fights. Because of the absence of behavioural data and, in many cases, lack of sexually discriminated series from juveniles to adults, we exclude the fossil record from this review. We merge morphological, ontogenetic, and behavioural information, and for the first time thoroughly review the tree of life to identify separate evolution of ISWs. We found that ISWs are only found in bilateral animals, appearing independently in nematodes, various groups of arthropods, and vertebrates. Our review sets a reference point to explore other taxa that we identify with potential ISWs for which behavioural or morphological studies are warranted. We establish that most ISWs come in pairs, are located in or near the head, are endo- or exoskeletal modifications, are overdeveloped structures compared with those found in females, are modified feeding structures and/or locomotor appendages, are most common in terrestrial taxa, are frequently used to guard females, territories, or both, and are also used in signalling displays to deter rivals and/or attract females. We also found that most taxa lack ISWs, that females of only a few species possess better-developed weapons than males, that the cases of independent evolution of ISWs are not evenly distributed across the phylogeny, and that animals possessing the most developed ISWs have non-hunting habits (e.g. herbivores) or are faunivores that prey on very small prey relative to their body size (e.g. insectivores). Bringing together perspectives from studies on a variety of taxa, we conceptualize that there are five ways in which a sexually dimorphic trait, apart from the primary sex traits, can be fixed: sexual selection, fecundity selection, parental role division, differential niche occupation between the sexes, and interference competition. We discuss these trends and the factors involved in the evolution of intrasexually selected weaponry in nature.
Collapse
Affiliation(s)
- Alejandro Rico-Guevara
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA, 94720, U.S.A.,Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Unit 3043, Storrs, CT, 06269, U.S.A.,Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Código Postal 11001, Bogotá DC, Colombia
| | - Kristiina J Hurme
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA, 94720, U.S.A.,Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd, Unit 3043, Storrs, CT, 06269, U.S.A
| |
Collapse
|
4
|
Martin ML, Warburton NM, Travouillon KJ, Fleming PA. Mechanical similarity across ontogeny of digging muscles in an Australian marsupial (Isoodon fusciventer
). J Morphol 2019; 280:423-435. [DOI: 10.1002/jmor.20954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/23/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Meg L. Martin
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - Natalie M. Warburton
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - Kenny J. Travouillon
- Department of Terrestrial Zoology; Western Australian Museum; Welshpool Western Australia Australia
| | - Patricia A. Fleming
- School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| |
Collapse
|
5
|
Kealy S, Beck R. Total evidence phylogeny and evolutionary timescale for Australian faunivorous marsupials (Dasyuromorphia). BMC Evol Biol 2017; 17:240. [PMID: 29202687 PMCID: PMC5715987 DOI: 10.1186/s12862-017-1090-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The order Dasyuromorphia is a diverse radiation of faunivorous marsupials, comprising >80 modern species in Australia and New Guinea. It includes dasyurids, the numbat (the myrmecobiid Myrmecobius fasciatus) and the recently extinct thylacine (the thylacinid Thylacinus cyncocephalus). There is also a diverse fossil record of dasyuromorphians and "dasyuromorphian-like" taxa known from Australia. We present the first total evidence phylogenetic analyses of the order, based on combined morphological and molecular data (including a novel set of 115 postcranial characters), to resolve relationships and calculate divergence dates. We use this information to analyse the diversification dynamics of modern dasyuromorphians. RESULTS Our morphology-only analyses are poorly resolved, but our molecular and total evidence analyses confidently resolve most relationships within the order, and are strongly congruent with recent molecular studies. Thylacinidae is the first family to diverge within the order, and there is strong support for four tribes within Dasyuridae (Dasyurini, Phascogalini, Planigalini and Sminthopsini). Among fossil taxa, Ankotarinja and Keeuna do not appear to be members of Dasyuromorphia, whilst Barinya and Mutpuracinus are of uncertain relationships within the order. Divergence dates calculated using total evidence tip-and-node dating are younger than both molecular node-dating and total evidence tip-dating, but appear more congruent with the fossil record and are relatively insensitive to calibration strategy. The tip-and-node divergence dates indicate that Dasyurini, Phascogalini and Sminthopsini began to radiate almost simultaneously during the middle-to-late Miocene (11.5-13.1 MYA; composite 95% HPD: 9.5-15.9 MYA); the median estimates for these divergences are shortly after a drop in global temperatures (the middle Miocene Climatic Transition), and coincide with a faunal turnover event in the mammalian fossil record of Australia. Planigalini radiated much later, during the latest Miocene to earliest Pliocene (6.5 MYA; composite 95% HPD: 4.4-8.9 MYA); the median estimates for these divergences coincide with an increase in grass pollen in the Australian palynological record that suggests the development of more open habitats, which are preferred by modern planigale species. CONCLUSIONS Our results provide a phylogenetic and temporal framework for interpreting the evolution of modern and fossil dasyuromorphians, but future progress will require a much improved fossil record.
Collapse
Affiliation(s)
- Shimona Kealy
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT Australia
| | - Robin Beck
- School of Environment and Life Sciences, University of Salford, Salford, M5 4WT UK
| |
Collapse
|
6
|
Kear BP, Aplin KP, Westerman M. Bandicoot fossils and DNA elucidate lineage antiquity amongst xeric-adapted Australasian marsupials. Sci Rep 2016; 6:37537. [PMID: 27881865 PMCID: PMC5121598 DOI: 10.1038/srep37537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/31/2016] [Indexed: 11/09/2022] Open
Abstract
Bandicoots (Peramelemorphia) are a unique order of Australasian marsupials whose sparse fossil record has been used as prima facie evidence for climate change coincident faunal turnover. In particular, the hypothesized replacement of ancient rainforest-dwelling extinct lineages by antecedents of xeric-tolerant extant taxa during the late Miocene (~10 Ma) has been advocated as a broader pattern evident amongst other marsupial clades. Problematically, however, this is in persistent conflict with DNA phylogenies. We therefore determine the pattern and timing of bandicoot evolution using the first combined morphological + DNA sequence dataset of Peramelemorphia. In addition, we document a remarkably archaic new fossil peramelemorphian taxon that inhabited a latest Quaternary mosaic savannah-riparian forest ecosystem on the Aru Islands of Eastern Indonesia. Our phylogenetic analyses reveal that unsuspected dental homoplasy and the detrimental effects of missing data collectively obscure stem bandicoot relationships. Nevertheless, recalibrated molecular clocks and multiple ancestral area optimizations unanimously infer an early diversification of modern xeric-adapted forms. These probably originated during the late Palaeogene (30-40 Ma) alongside progenitors of other desert marsupials, and thus occupied seasonally dry heterogenous habitats long before the onset of late Neogene aridity.
Collapse
Affiliation(s)
- Benjamin P Kear
- Museum of Evolution, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden.,Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden
| | - Ken P Aplin
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, P.O. Box. 37012, Washington, DC, 20013-7012, USA
| | - Michael Westerman
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
7
|
Travouillon KJ. Oldest fossil remains of the enigmatic pig-footed bandicoot show rapid herbivorous evolution. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160089. [PMID: 27853588 PMCID: PMC5108938 DOI: 10.1098/rsos.160089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
The pig-footed bandicoot, Chaeropus ecaudatus, is one of the most enigmatic Australian marsupials, which went extinct in the late 1950s probably as a result of European colonization. It is unusual in being the only marsupial to have evolved reduction of digits on both fore and hind feet, with the forefeet being pig-like (two toes) and the hind feet being horse-like (one toe). According to molecular phylogenetic analyses, Chaeropus diverged from other bandicoots (Peramelidae), and the bilbies (Thylacomyidae) by the mid-Late Oligocene. This is considerably earlier than suggested by the fossil record, with the current oldest specimens being Late Pleistocene in age. Here, I report the oldest fossils of Chaeropus, representing a new species, Chaeropus baynesi from the Late Pliocene to Early Pleistocene (2.47-2.92 Ma) Fisherman's Cliff Local Fauna, Moorna Formation, New South Wales, Australia, and extending the fossil record of the genus and family by at least 2 million years. Chaeropus baynesi is less high crowned than C. ecaudatus and lacks lateral blade development on lower molars, suggesting that it was unlikely to be grazing. This suggests that Chaeropus must have adapted rapidly to the drying conditions and changes in environments, and would have become a grazer in a very short period of time.
Collapse
|
8
|
Warburton NM, Travouillon KJ. The biology and palaeontology of the Peramelemorphia: a review of current knowledge and future research directions. AUST J ZOOL 2016. [DOI: 10.1071/zo16003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bandicoots and bilbies (Marsupialia : Peramelemorphia) represent the dominant omnivorous clade of Australasian marsupials and, as ground-dwelling, small- to medium-sized mammals, have not fared well in the 200 years since European settlement. Unlike large or charismatic marsupial species, the cryptic nature of bandicoots and bilbies tends to keep them out of the public eye, at a time when public interest plays a significant role in conservation efforts. The inconspicuous ‘rat-like’ appearance of many bandicoots and a generalist ecological strategy belie a complex biology of adaptive traits and evolutionary diversity. For a few species these biological traits have enabled them to make use of urban environments. In the main, however, peramelemorphians are facing ongoing pressure from introduced predators and human impacts. Basic biological information for many species, particularly those from New Guinea, is still lacking. In this review, we examine advances in the knowledge of the biology of this group over the past 25 years including anatomical, physiological and ecological studies. We also provide a comprehensive review of the fossil records of bandicoots in order to provide an up-to-date platform for future studies. From this work, it is clear that there is still much to be done regarding the taxonomy and biology of these animals before a more detailed understanding of the evolutionary history of this group can be elucidated.
Collapse
|