2
|
Feng S, Bai M, Rivas-González I, Li C, Liu S, Tong Y, Yang H, Chen G, Xie D, Sears KE, Franco LM, Gaitan-Espitia JD, Nespolo RF, Johnson WE, Yang H, Brandies PA, Hogg CJ, Belov K, Renfree MB, Helgen KM, Boomsma JJ, Schierup MH, Zhang G. Incomplete lineage sorting and phenotypic evolution in marsupials. Cell 2022; 185:1646-1660.e18. [PMID: 35447073 PMCID: PMC9200472 DOI: 10.1016/j.cell.2022.03.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.
Collapse
Affiliation(s)
- Shaohong Feng
- BGI-Shenzhen, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Agriculture, Ningxia University, Yinchuan 750021, China; College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | | | - Cai Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | - Yijie Tong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071001, China; Hainan Yazhou Bay Seed Lab, Building 1, No. 7 Yiju Road, Yazhou District, Sanya, Hainan 572024, China
| | - Haidong Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Guangji Chen
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duo Xie
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Lida M Franco
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué, Colombia
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile; Millenium Institute for Integrative Biology (iBio), Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Warren E Johnson
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remont Road, Front Royal, VA 22630, USA; The Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, 4210 Silver Hill Rd., Suitland, MD 20746-2863, USA; Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Parice A Brandies
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia; Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacobus J Boomsma
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, 2100 Copenhagen, Denmark; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
3
|
Fontúrbel FE, Franco LM, Bozinovic F, Quintero‐Galvis JF, Mejías C, Amico GC, Vazquez MS, Sabat P, Sánchez‐Hernández JC, Watson DM, Saenz‐Agudelo P, Nespolo RF. The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests. Ecol Evol 2022; 12:e8645. [PMID: 35261741 PMCID: PMC8888251 DOI: 10.1002/ece3.8645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.
Collapse
Affiliation(s)
- Francisco E. Fontúrbel
- Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
| | - Lida M. Franco
- Facultad de Ciencias Naturales y MatemáticasUniversidad de IbaguéIbaguéColombia
| | - Francisco Bozinovic
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | | | - Carlos Mejías
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | | | | | - Pablo Sabat
- Departamento de Ciencias EcológicasFacultad de CienciasUniversidad de ChileSantiagoChile
| | | | - David M. Watson
- School of Agricultural, Environmental and Veterinary SciencesCharles Sturt UniversityAlburyNSWAustralia
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|