1
|
Selvaggi F, Lopetuso LR, delli Pizzi A, Melchiorre E, Murgiano M, Taraschi AL, Cotellese R, Diana M, Vivarelli M, Mocchegiani F, Catalano T, Aceto GM. Diagnosis of Cholangiocarcinoma: The New Biological and Technological Horizons. Diagnostics (Basel) 2025; 15:1011. [PMID: 40310432 PMCID: PMC12025943 DOI: 10.3390/diagnostics15081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The diagnosis of cholangiocarcinoma (CCA) remains challenging. Although new technologies have been developed and validated, their routine use in clinical practice is needed. Conventional cytology obtained during endoscopic retrograde cholangiopancreatography-guided brushings is the first-line technique for the diagnosis of CCA, but it has shown limited sensitivity when combined with endoscopic ultrasound-guided biopsy. Other diagnostic tools have been proposed for the diagnosis of CCA, with their respective advantages and limitations. Cholangioscopy with biopsy or cytology combined with FISH analysis, intraductal biliary ultrasound and confocal laser microscopy have made significant advances in the last decade. More recently, developments in the analytical "omics" sciences have allowed the mapping of the microbiota of patients with CCA, and liquid biopsy with proteomic and extracellular vesicle analysis has allowed the identification of new biomarkers that can be incorporated into the predictive diagnostics. Furthermore, in the preoperative setting, radiomics, radiogenomics and the integrated use of artificial intelligence may provide new useful foundations for integrated diagnosis and personalized therapy for hepatobiliary diseases. This review aims to evaluate the current diagnostic approaches and innovative translational research that can be integrated for the diagnosis of CCA.
Collapse
Affiliation(s)
- Federico Selvaggi
- ASL2 Lanciano-Vasto-Chieti, Unit of General Surgery, 66100 Chieti, Italy
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (R.C.); (G.M.A.)
| | - Loris Riccardo Lopetuso
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Gemelli IRCCS, 00136 Roma, Italy; (L.R.L.); (M.M.)
- Dipartimento di Scienze della Vita della Salute e delle Professioni Sanitarie, Università degli Studi Link, 00165 Roma, Italy
| | - Andrea delli Pizzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, 66100 Chieti, Italy;
- ITAB—Institute for Advanced Biomedical Technologies, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Eugenia Melchiorre
- University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Marco Murgiano
- Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell’Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Gemelli IRCCS, 00136 Roma, Italy; (L.R.L.); (M.M.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | | | - Roberto Cotellese
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (R.C.); (G.M.A.)
| | - Michele Diana
- Department of Surgery, University Hospital of Geneva, 1205 Geneva, Switzerland;
| | - Marco Vivarelli
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, 60126 Ancona, Italy; (M.V.); (F.M.)
| | - Federico Mocchegiani
- Department of Experimental and Clinical Medicine, Polytechnic University of Marche, 60126 Ancona, Italy; (M.V.); (F.M.)
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Gitana Maria Aceto
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (R.C.); (G.M.A.)
- Department of Science, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
2
|
Wang KX, Li YT, Yang SH, Li F. Research trends and hotspots evolution of artificial intelligence for cholangiocarcinoma over the past 10 years: a bibliometric analysis. Front Oncol 2025; 14:1454411. [PMID: 40017633 PMCID: PMC11865243 DOI: 10.3389/fonc.2024.1454411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 03/01/2025] Open
Abstract
Objective To analyze the research hotspots and potential of Artificial Intelligence (AI) in cholangiocarcinoma (CCA) through visualization. Methods A comprehensive search of publications on the application of AI in CCA from January 1, 2014, to December 31, 2023, within the Web of Science Core Collection, was conducted, and citation information was extracted. CiteSpace 6.2.R6 was used for the visualization analysis of citation information. Results A total of 736 publications were included in this study. Early research primarily focused on traditional treatment methods and care strategies for CCA, but since 2019, there has been a significant shift towards the development and optimization of AI algorithms and their application in early cancer diagnosis and treatment decision-making. China emerged as the country with the highest volume of publications, while Khon Kaen University in Thailand was the academic institution with the highest number of publications. A core group of authors involved in a dense network of international collaboration was identified. HEPATOLOGY was found to be the most influential journal in the field. The disciplinary development pattern in this domain exhibits the characteristic of multiple disciplines intersecting and integrating. Conclusion The current research hotspots primarily revolve around three directions: AI in the diagnosis and classification of CCA, AI in the preoperative assessment of cancer metastasis risk in CCA, and AI in the prediction of postoperative recurrence in CCA. The complementarity and interdependence among different AI applications will facilitate future applications of AI in the CCA field.
Collapse
Affiliation(s)
| | | | - Sun-hu Yang
- Department of General Surgery, Shanghai Traditional Chinese Medicine (TCM)-INTEGRATED Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Li
- Department of General Surgery, Shanghai Traditional Chinese Medicine (TCM)-INTEGRATED Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Sun K, Li M, Shi Y, He H, Li Y, Sun L, Wang H, Jin C, Chen M, Li L. Convolutional neural network for identifying common bile duct stones based on magnetic resonance cholangiopancreatography. Clin Radiol 2024; 79:553-558. [PMID: 38616474 DOI: 10.1016/j.crad.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 04/16/2024]
Abstract
AIMS To develop an auto-categorization system based on machine learning for three-dimensional magnetic resonance cholangiopancreatography (3D MRCP) to detect choledocholithiasis from healthy and symptomatic individuals. MATERIALS AND METHODS 3D MRCP sequences from 254 cases with common bile duct (CBD) stones and 251 cases with normal CBD were enrolled to train the 3D Convolutional Neural Network (3D-CNN) model. Then 184 patients from three different hospitals (91 with positive CBD stone and 93 with normal CBD) were prospectively included to test the performance of 3D-CNN. RESULTS With a cutoff value of 0.2754, 3D-CNN achieved the sensitivity, specificity, and accuracy of 94.51%, 92.47%, and 93.48%, respectively. In the receiver operating characteristic curve analysis, the area under the curve (AUC) for the presence or absence of CBD stones was 0.974 (95% CI, 0.940-0.992). There was no significant difference in sensitivity, specificity, and accuracy between 3D-CNN and radiologists. In addition, the performance of 3D-CNN was also evaluated in the internal test set and the external test set, respectively. The internal test set yielded an accuracy of 94.74% and AUC of 0.974 (95% CI, 0.919-0.996), and the external test set yielded an accuracy of 92.13% and AUC of 0.970 (95% CI, 0.911-0.995). CONCLUSIONS An artificial intelligence-assisted diagnostic system for CBD stones was constructed using 3D-CNN model for 3D MRCP images. The performance of 3D-CNN model was comparable to that of radiologists in diagnosing CBD stones. 3D-CNN model maintained high performance when applied to data from other hospitals.
Collapse
Affiliation(s)
- K Sun
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - M Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Y Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - H He
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Y Li
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - L Sun
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - H Wang
- Zhejiang Herymed Technology Co., Ltd., Hangzhou, China; Hithink Flush Information Network Co., Ltd., Hangzhou, China.
| | - C Jin
- Zhejiang Herymed Technology Co., Ltd., Hangzhou, China; Hithink Flush Information Network Co., Ltd., Hangzhou, China.
| | - M Chen
- Hithink Flush Information Network Co., Ltd., Hangzhou, China.
| | - L Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Liu J, Shu J. Immunotherapy and targeted therapy for cholangiocarcinoma: Artificial intelligence research in imaging. Crit Rev Oncol Hematol 2024; 194:104235. [PMID: 38220125 DOI: 10.1016/j.critrevonc.2023.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive hepatobiliary malignancy, second only to hepatocellular carcinoma in prevalence. Despite surgical treatment being the recommended method to achieve a cure, it is not viable for patients with advanced CCA. Gene sequencing and artificial intelligence (AI) have recently opened up new possibilities in CCA diagnosis, treatment, and prognosis assessment. Basic research has furthered our understanding of the tumor-immunity microenvironment and revealed targeted molecular mechanisms, resulting in immunotherapy and targeted therapy being increasingly employed in the clinic. Yet, the application of these remedies in CCA is a challenging endeavor due to the varying pathological mechanisms of different CCA types and the lack of expressed immune proteins and molecular targets in some patients. AI in medical imaging has emerged as a powerful tool in this situation, as machine learning and deep learning are able to extract intricate data from CCA lesion images while assisting clinical decision making, and ultimately improving patient prognosis. This review summarized and discussed the current immunotherapy and targeted therapy related to CCA, and the research progress of AI in this field.
Collapse
Affiliation(s)
- Jiong Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
5
|
Chakrabarti S, Rao US. Lightweight neural network for smart diagnosis of cholangiocarcinoma using histopathological images. Sci Rep 2023; 13:18854. [PMID: 37914815 PMCID: PMC10620203 DOI: 10.1038/s41598-023-46152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023] Open
Abstract
Traditional Cholangiocarcinoma detection methodology, which involves manual interpretation of histopathological images obtained after biopsy, necessitates extraordinary domain expertise and a significant level of subjectivity, resulting in several deaths due to improper or delayed detection of this cancer that develops in the bile duct lining. Automation in the diagnosis of this dreadful disease is desperately needed to allow for more effective and faster identification of the disease with a better degree of accuracy and reliability, ultimately saving countless human lives. The primary goal of this study is to develop a machine-assisted method of automation for the accurate and rapid identification of Cholangiocarcinoma utilizing histopathology images with little preprocessing. This work proposes CholangioNet, a novel lightweight neural network for detecting Cholangiocarcinoma utilizing histological RGB images. The histological RGB image dataset considered in this research work was found to have limited number of images, hence data augmentation was performed to increase the number of images. The finally obtained dataset was then subjected to minimal preprocessing procedures. These preprocessed images were then fed into the proposed lightweight CholangioNet. The performance of this proposed architecture is then compared with the performance of some of the prominent existing architectures like, VGG16, VGG19, ResNet50 and ResNet101. The Accuracy, Loss, Precision, and Sensitivity metrics are used to assess the efficiency of the proposed system. At 200 epochs, the proposed architecture achieves maximum training accuracy, precision, and recall of 99.90%, 100%, and 100%, respectively. The suggested architecture's validation accuracy, precision, and recall are 98.40%, 100%, and 100%, respectively. When compared to the performance of other AI-based models, the proposed system produced better results making it a potential AI tool for real world application.
Collapse
Affiliation(s)
- Shubhadip Chakrabarti
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, Tamil Nadu, 600127, India
| | - Ummity Srinivasa Rao
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, Tamil Nadu, 600127, India.
| |
Collapse
|
6
|
Shah AA, Alturise F, Alkhalifah T, Faisal A, Khan YD. EDLM: Ensemble Deep Learning Model to Detect Mutation for the Early Detection of Cholangiocarcinoma. Genes (Basel) 2023; 14:1104. [PMID: 37239464 PMCID: PMC10217880 DOI: 10.3390/genes14051104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The most common cause of mortality and disability globally right now is cholangiocarcinoma, one of the worst forms of cancer that may affect people. When cholangiocarcinoma develops, the DNA of the bile duct cells is altered. Cholangiocarcinoma claims the lives of about 7000 individuals annually. Women pass away less often than men. Asians have the greatest fatality rate. Following Whites (20%) and Asians (22%), African Americans (45%) saw the greatest increase in cholangiocarcinoma mortality between 2021 and 2022. For instance, 60-70% of cholangiocarcinoma patients have local infiltration or distant metastases, which makes them unable to receive a curative surgical procedure. Across the board, the median survival time is less than a year. Many researchers work hard to detect cholangiocarcinoma, but this is after the appearance of symptoms, which is late detection. If cholangiocarcinoma progression is detected at an earlier stage, then it will help doctors and patients in treatment. Therefore, an ensemble deep learning model (EDLM), which consists of three deep learning algorithms-long short-term model (LSTM), gated recurrent units (GRUs), and bi-directional LSTM (BLSTM)-is developed for the early identification of cholangiocarcinoma. Several tests are presented, such as a 10-fold cross-validation test (10-FCVT), an independent set test (IST), and a self-consistency test (SCT). Several statistical techniques are used to evaluate the proposed model, such as accuracy (Acc), sensitivity (Sn), specificity (Sp), and Matthew's correlation coefficient (MCC). There are 672 mutations in 45 distinct cholangiocarcinoma genes among the 516 human samples included in the proposed study. The IST has the highest Acc at 98%, outperforming all other validation approaches.
Collapse
Affiliation(s)
- Asghar Ali Shah
- Department of Computer Science, Bahria University, Islamabad 04408, Pakistan;
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 51921, Qassim, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass 51921, Qassim, Saudi Arabia
| | - Amna Faisal
- Department of Computer Science, Bahria University, Lahore 54782, Pakistan;
| | - Yaser Daanial Khan
- Department of Computer Science, University of Management and Technology, Lahore 54782, Pakistan;
| |
Collapse
|
7
|
Berbís MA, Paulano Godino F, Royuela del Val J, Alcalá Mata L, Luna A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J Gastroenterol 2023; 29:1427-1445. [PMID: 36998424 PMCID: PMC10044858 DOI: 10.3748/wjg.v29.i9.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Artificial intelligence (AI) has experienced substantial progress over the last ten years in many fields of application, including healthcare. In hepatology and pancreatology, major attention to date has been paid to its application to the assisted or even automated interpretation of radiological images, where AI can generate accurate and reproducible imaging diagnosis, reducing the physicians’ workload. AI can provide automatic or semi-automatic segmentation and registration of the liver and pancreatic glands and lesions. Furthermore, using radiomics, AI can introduce new quantitative information which is not visible to the human eye to radiological reports. AI has been applied in the detection and characterization of focal lesions and diffuse diseases of the liver and pancreas, such as neoplasms, chronic hepatic disease, or acute or chronic pancreatitis, among others. These solutions have been applied to different imaging techniques commonly used to diagnose liver and pancreatic diseases, such as ultrasound, endoscopic ultrasonography, computerized tomography (CT), magnetic resonance imaging, and positron emission tomography/CT. However, AI is also applied in this context to many other relevant steps involved in a comprehensive clinical scenario to manage a gastroenterological patient. AI can also be applied to choose the most convenient test prescription, to improve image quality or accelerate its acquisition, and to predict patient prognosis and treatment response. In this review, we summarize the current evidence on the application of AI to hepatic and pancreatic radiology, not only in regard to the interpretation of images, but also to all the steps involved in the radiological workflow in a broader sense. Lastly, we discuss the challenges and future directions of the clinical application of AI methods.
Collapse
Affiliation(s)
- M Alvaro Berbís
- Department of Radiology, HT Médica, San Juan de Dios Hospital, Córdoba 14960, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid 28049, Spain
| | | | | | - Lidia Alcalá Mata
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| | - Antonio Luna
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| |
Collapse
|
8
|
Granata V, Fusco R, De Muzio F, Cutolo C, Grassi F, Brunese MC, Simonetti I, Catalano O, Gabelloni M, Pradella S, Danti G, Flammia F, Borgheresi A, Agostini A, Bruno F, Palumbo P, Ottaiano A, Izzo F, Giovagnoni A, Barile A, Gandolfo N, Miele V. Risk Assessment and Cholangiocarcinoma: Diagnostic Management and Artificial Intelligence. BIOLOGY 2023; 12:213. [PMID: 36829492 PMCID: PMC9952965 DOI: 10.3390/biology12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor, with a median survival of only 13 months. Surgical resection remains the only curative therapy; however, at first detection, only one-third of patients are at an early enough stage for this approach to be effective, thus rendering early diagnosis as an efficient approach to improving survival. Therefore, the identification of higher-risk patients, whose risk is correlated with genetic and pre-cancerous conditions, and the employment of non-invasive-screening modalities would be appropriate. For several at-risk patients, such as those suffering from primary sclerosing cholangitis or fibropolycystic liver disease, the use of periodic (6-12 months) imaging of the liver by ultrasound (US), magnetic Resonance Imaging (MRI)/cholangiopancreatography (MRCP), or computed tomography (CT) in association with serum CA19-9 measurement has been proposed. For liver cirrhosis patients, it has been proposed that at-risk iCCA patients are monitored in a similar fashion to at-risk HCC patients. The possibility of using Artificial Intelligence models to evaluate higher-risk patients could favor the diagnosis of these entities, although more data are needed to support the practical utility of these applications in the field of screening. For these reasons, it would be appropriate to develop screening programs in the research protocols setting. In fact, the success of these programs reauires patient compliance and multidisciplinary cooperation.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Orlando Catalano
- Radiology Unit, Istituto Diagnostico Varelli, Via Cornelia dei Gracchi 65, 80126 Naples, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56216 Pisa, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Federica Flammia
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Federico Bruno
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Pierpaolo Palumbo
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS-Fondazione G. Pascale, 80130 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
9
|
Brenner AR, Laoveeravat P, Carey PJ, Joiner D, Mardini SH, Jovani M. Artificial intelligence using advanced imaging techniques and cholangiocarcinoma: Recent advances and future direction. Artif Intell Gastroenterol 2022; 3:88-95. [DOI: 10.35712/aig.v3.i3.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
While cholangiocarcinoma represents only about 3% of all gastrointestinal tumors, it has a dismal survival rate, usually because it is diagnosed at a late stage. The utilization of Artificial Intelligence (AI) in medicine in general, and in gastroenterology has made gigantic steps. However, the application of AI for biliary disease, in particular for cholangiocarcinoma, has been sub-optimal. The use of AI in combination with clinical data, cross-sectional imaging (computed tomography, magnetic resonance imaging) and endoscopy (endoscopic ultrasound and cholangioscopy) has the potential to significantly improve early diagnosis and the choice of optimal therapeutic options, leading to a transformation in the prognosis of this feared disease. In this review we summarize the current knowledge on the use of AI for the diagnosis and management of cholangiocarcinoma and point to future directions in the field.
Collapse
Affiliation(s)
- Aaron R Brenner
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Passisd Laoveeravat
- Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Patrick J Carey
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Danielle Joiner
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Samuel H Mardini
- Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KENTUCKY 40536, United States
| | - Manol Jovani
- Digestive Diseases and Nutrition, University of Kentucky Albert B. Chandler Hospital, Lexington, KY 40536, United States
| |
Collapse
|
10
|
Haghbin H, Aziz M. Artificial intelligence and cholangiocarcinoma: Updates and prospects. World J Clin Oncol 2022; 13:125-134. [PMID: 35316928 PMCID: PMC8894273 DOI: 10.5306/wjco.v13.i2.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is the timeliest field of computer science and attempts to mimic cognitive function of humans to solve problems. In the era of “Big data”, there is an ever-increasing need for AI in all aspects of medicine. Cholangiocarcinoma (CCA) is the second most common primary malignancy of liver that has shown an increase in incidence in the last years. CCA has high mortality as it is diagnosed in later stages that decreases effect of surgery, chemotherapy, and other modalities. With technological advancement there is an immense amount of clinicopathologic, genetic, serologic, histologic, and radiologic data that can be assimilated together by modern AI tools for diagnosis, treatment, and prognosis of CCA. The literature shows that in almost all cases AI models have the capacity to increase accuracy in diagnosis, treatment, and prognosis of CCA. Most studies however are retrospective, and one study failed to show AI benefit in practice. There is immense potential for AI in diagnosis, treatment, and prognosis of CCA however limitations such as relative lack of studies in use by human operators in improvement of survival remains to be seen.
Collapse
Affiliation(s)
- Hossein Haghbin
- Department of Gastroenterology, Ascension Providence Southfield, Southfield, MI 48075, United States
| | - Muhammad Aziz
- Department of Gastroenterology, University of Toledo Medical Center, Toledo, OH 43614, United States
| |
Collapse
|
11
|
Christou CD, Tsoulfas G. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2021; 27:6191-6223. [PMID: 34712027 PMCID: PMC8515803 DOI: 10.3748/wjg.v27.i37.6191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/06/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is an umbrella term used to describe a cluster of interrelated fields. Machine learning (ML) refers to a model that learns from past data to predict future data. Medicine and particularly gastroenterology and hepatology, are data-rich fields with extensive data repositories, and therefore fruitful ground for AI/ML-based software applications. In this study, we comprehensively review the current applications of AI/ML-based models in these fields and the opportunities that arise from their application. Specifically, we refer to the applications of AI/ML-based models in prevention, diagnosis, management, and prognosis of gastrointestinal bleeding, inflammatory bowel diseases, gastrointestinal premalignant and malignant lesions, other nonmalignant gastrointestinal lesions and diseases, hepatitis B and C infection, chronic liver diseases, hepatocellular carcinoma, cholangiocarcinoma, and primary sclerosing cholangitis. At the same time, we identify the major challenges that restrain the widespread use of these models in healthcare in an effort to explore ways to overcome them. Notably, we elaborate on the concerns regarding intrinsic biases, data protection, cybersecurity, intellectual property, liability, ethical challenges, and transparency. Even at a slower pace than anticipated, AI is infiltrating the healthcare industry. AI in healthcare will become a reality, and every physician will have to engage with it by necessity.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Organ Transplant Unit, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Organ Transplant Unit, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
12
|
Wang S, Liu X, Zhao J, Liu Y, Liu S, Liu Y, Zhao J. Computer auxiliary diagnosis technique of detecting cholangiocarcinoma based on medical imaging: A review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106265. [PMID: 34311415 DOI: 10.1016/j.cmpb.2021.106265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Cholangiocarcinoma (CCA) is one of the most aggressive human malignant tumors and is becoming one of the main factors of death and disability globally. Specifically, 60% to 70% of CCA patients were diagnosed with local invasion or distant metastasis and lost the chance of radical operation. The overall median survival time was less than 12 months. As a non-invasive diagnostic technology, medical imaging consisting of computed tomography (CT) imaging, magnetic resonance imaging (MRI), and ultrasound (US) imaging, is the most effectively and commonly used method to detect CCA. The computer auxiliary diagnosis (CAD) system based on medical imaging is helpful for rapid diagnosis and provides credible "second opinion" for specialists. The purpose of this review is to categorize and review the CAD technique of detecting CCA based on medical imaging. METHODS This work applies a four-level screening process to choose suitable publications. 125 research papers published in different academic research databases were selected and analyzed according to specific criteria. From the five steps of medical image acquisition, processing, analysis, understanding and verification of CAD combined with artificial intelligence algorithms, we obtain the most advanced insights related to CCA detection. RESULTS This work provides a comprehensive analysis and comparison analysis of the current CAD systems of detecting CCA. After careful investigation, we find that the main detection methods are traditional machine learning method and deep learning method. For the detection, the most commonly used method is semi-automatic segmentation algorithm combined with support vector machine classifier method, combination of which has good detection performance. The end-to-end training mode makes deep learning method more and more popular in CAD systems. However, due to the limited medical training data, the accuracy of deep learning method is unsatisfactory. CONCLUSIONS Based on analysis of artificial intelligence methods applied in CCA, this work is expected to be truly applied in clinical practice in the future to improve the level of clinical diagnosis and treatment of it. This work concludes by providing a prediction of future trends, which will be of great significance for researchers in the medical imaging of CCA and artificial intelligence.
Collapse
Affiliation(s)
- Shiyu Wang
- School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiang Liu
- School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingwen Zhao
- School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yiwen Liu
- School of Electronic and Electric Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Yisi Liu
- Department of Pathology and Hepatology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
13
|
Goyal H, Mann R, Gandhi Z, Perisetti A, Zhang Z, Sharma N, Saligram S, Inamdar S, Tharian B. Application of artificial intelligence in pancreaticobiliary diseases. Ther Adv Gastrointest Endosc 2021; 14:2631774521993059. [PMID: 33644756 PMCID: PMC7890713 DOI: 10.1177/2631774521993059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
The role of artificial intelligence and its applications has been increasing at a rapid pace in the field of gastroenterology. The application of artificial intelligence in gastroenterology ranges from colon cancer screening and characterization of dysplastic and neoplastic polyps to the endoscopic ultrasonographic evaluation of pancreatic diseases. Artificial intelligence has been found to be useful in the evaluation and enhancement of the quality measure for endoscopic retrograde cholangiopancreatography. Similarly, artificial intelligence techniques like artificial neural networks and faster region-based convolution network are showing promising results in early and accurate diagnosis of pancreatic cancer and its differentiation from chronic pancreatitis. Other artificial intelligence techniques like radiomics-based computer-aided diagnosis systems could help to differentiate between various types of cystic pancreatic lesions. Artificial intelligence and computer-aided systems also showing promising results in the diagnosis of cholangiocarcinoma and the prediction of choledocholithiasis. In this review, we discuss the role of artificial intelligence in establishing diagnosis, prognosis, predicting response to treatment, and guiding therapeutics in the pancreaticobiliary system.
Collapse
Affiliation(s)
- Hemant Goyal
- The Wright Center for Graduate Medical Education, 501 S. Washington Avenue, Scranton, PA 18505, USA
| | - Rupinder Mann
- Academic Hospitalist, Saint Agnes Medical Center, Fresno, CA, USA
| | - Zainab Gandhi
- Department of Medicine, Geisinger Community Medical Center, Scranton, PA, USA
| | - Abhilash Perisetti
- Department of Gastroenterology and Hepatology, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zhongheng Zhang
- Department of emergency medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Neil Sharma
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, Fort Wayne, IN, USA
- Indiana University School of Medicine, Fort Wayne, IN, USA
| | - Shreyas Saligram
- Division of Advanced Endoscopy, Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Texas Health, San Antonio, TX, USA
| | - Sumant Inamdar
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Benjamin Tharian
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
14
|
Arif M. Similarity-Dissimilarity Plot for Visualization of High Dimensional Data in Biomedical Pattern Classification. J Med Syst 2012; 36:1173-81. [DOI: 10.1007/s10916-010-9579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|
15
|
Real time decision support system for diagnosis of rare cancers, trained in parallel, on a graphics processing unit. Comput Biol Med 2012; 42:376-86. [DOI: 10.1016/j.compbiomed.2011.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/02/2011] [Indexed: 01/04/2023]
|
16
|
Zhang M, Yin F, Chen B, Li YP, Yan LN, Wen TF, Li B. Pretransplant prediction of posttransplant survival for liver recipients with benign end-stage liver diseases: a nonlinear model. PLoS One 2012; 7:e31256. [PMID: 22396731 PMCID: PMC3291549 DOI: 10.1371/journal.pone.0031256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/05/2012] [Indexed: 02/05/2023] Open
Abstract
Background The scarcity of grafts available necessitates a system that considers expected posttransplant survival, in addition to pretransplant mortality as estimated by the MELD. So far, however, conventional linear techniques have failed to achieve sufficient accuracy in posttransplant outcome prediction. In this study, we aim to develop a pretransplant predictive model for liver recipients' survival with benign end-stage liver diseases (BESLD) by a nonlinear method based on pretransplant characteristics, and compare its performance with a BESLD-specific prognostic model (MELD) and a general-illness severity model (the sequential organ failure assessment score, or SOFA score). Methodology/Principal Findings With retrospectively collected data on 360 recipients receiving deceased-donor transplantation for BESLD between February 1999 and August 2009 in the west China hospital of Sichuan university, we developed a multi-layer perceptron (MLP) network to predict one-year and two-year survival probability after transplantation. The performances of the MLP, SOFA, and MELD were assessed by measuring both calibration ability and discriminative power, with Hosmer-Lemeshow test and receiver operating characteristic analysis, respectively. By the forward stepwise selection, donor age and BMI; serum concentration of HB, Crea, ALB, TB, ALT, INR, Na+; presence of pretransplant diabetes; dialysis prior to transplantation, and microbiologically proven sepsis were identified to be the optimal input features. The MLP, employing 18 input neurons and 12 hidden neurons, yielded high predictive accuracy, with c-statistic of 0.91 (P<0.001) in one-year and 0.88 (P<0.001) in two-year prediction. The performances of SOFA and MELD were fairly poor in prognostic assessment, with c-statistics of 0.70 and 0.66, respectively, in one-year prediction, and 0.67 and 0.65 in two-year prediction. Conclusions/Significance The posttransplant prognosis is a multidimensional nonlinear problem, and the MLP can achieve significantly high accuracy than SOFA and MELD scores in posttransplant survival prediction. The pattern recognition methodologies like MLP hold promise for solving posttransplant outcome prediction.
Collapse
Affiliation(s)
- Ming Zhang
- Liver Transplantation Center, West China Hospital, Sichuan University Medical School, Chengdu, People's Republic of China
- Chinese Cochrane Center and Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University Medical School, Chengdu, People's Republic of China
| | - Fei Yin
- Department of Biostatistics, West China School of Public Health, Sichuan University, Chengdu, People's Republic of China
| | - Bo Chen
- Department of Medical Informatics, West China Hospital, Sichuan University Medical School, Chengdu, People's Republic of China
| | - You Ping Li
- Chinese Cochrane Center and Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University Medical School, Chengdu, People's Republic of China
| | - Lu Nan Yan
- Liver Transplantation Center, West China Hospital, Sichuan University Medical School, Chengdu, People's Republic of China
| | - Tian Fu Wen
- Liver Transplantation Center, West China Hospital, Sichuan University Medical School, Chengdu, People's Republic of China
| | - Bo Li
- Liver Transplantation Center, West China Hospital, Sichuan University Medical School, Chengdu, People's Republic of China
- * E-mail:
| |
Collapse
|