1
|
Geppert J, Auguste P, Asgharzadeh A, Ghiasvand H, Patel M, Brown A, Jayakody S, Helm E, Todkill D, Madan J, Stinton C, Gallacher D, Taylor-Phillips S, Chen YF. Software with artificial intelligence-derived algorithms for detecting and analysing lung nodules in CT scans: systematic review and economic evaluation. Health Technol Assess 2025; 29:1-234. [PMID: 40380885 DOI: 10.3310/jytw8921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025] Open
Abstract
Background Lung cancer is one of the most common types of cancer and the leading cause of cancer death in the United Kingdom. Artificial intelligence-based software has been developed to reduce the number of missed or misdiagnosed lung nodules on computed tomography images. Objective To assess the accuracy, clinical effectiveness and cost-effectiveness of using software with artificial intelligence-derived algorithms to assist in the detection and analysis of lung nodules in computed tomography scans of the chest compared with unassisted reading. Design Systematic review and de novo cost-effectiveness analysis. Methods Searches were undertaken from 2012 to January 2022. Company submissions were accepted until 31 August 2022. Study quality was assessed using the revised tool for the quality assessment of diagnostic accuracy studies (QUADAS-2), the extension to QUADAS-2 for assessing risk of bias in comparative accuracy studies (QUADAS-C) and the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist. Outcomes were synthesised narratively. Two decision trees were used for cost-effectiveness: (1) a simple decision tree for the detection of actionable nodules and (2) a decision tree reflecting the full clinical pathways for people undergoing chest computed tomography scans. Models estimated incremental cost-effectiveness ratios, cost per correct detection of an actionable nodule, and cost per cancer detected and treated. We undertook scenario and sensitivity analyses. Results Twenty-seven studies were included. All were rated as being at high risk of bias. Twenty-four of the included studies used retrospective data sets. Seventeen compared readers with and without artificial intelligence software. One reported prospective screening experiences before and after artificial intelligence software implementation. The remaining studies either evaluated stand-alone artificial intelligence or provided only non-comparative evidence. (1) Artificial intelligence assistance generally improved the detection of any nodules compared with unaided reading (three studies; average per-person sensitivity 0.43-0.68 for unaided and 0.79-0.99 for artificial intelligence-assisted reading), with similar or lower specificity (three studies; 0.77-1.00 for unaided and 0.81-0.97 for artificial intelligence-assisted reading). Nodule diameters were similar or significantly larger with semiautomatic measurements than with manual measurements. Intra-reader and inter-reader agreement in nodule size measurement and in risk classification generally improved with artificial intelligence assistance or were comparable to those with unaided reading. However, the effect on measurement accuracy is unclear. (2) Radiologist reading time generally decreased with artificial intelligence assistance in research settings. (3) Artificial intelligence assistance tended to increase allocated risk categories as defined by clinical guidelines. (4) No relevant clinical effectiveness and cost-effectiveness studies were identified. (5) The de novo cost-effectiveness analysis suggested that for symptomatic and incidental populations, artificial intelligence-assisted computed tomography image analysis dominated the unaided radiologist in cost per correct detection of an actionable nodule. However, when relevant costs and quality-adjusted life-years from the full clinical pathway were included, artificial intelligence-assisted computed tomography reading was dominated by the unaided reader. For screening, artificial intelligence-assisted computed tomography image analysis was cost-effective in the base case and all sensitivity and scenario analyses. Limitations Due to the heterogeneity, sparseness, low quality and low applicability of the clinical effectiveness evidence and the major challenges in linking test accuracy evidence to clinical and economic outcomes, the findings presented here are highly uncertain and provide indicators/frameworks for future assessment. Conclusions Artificial intelligence-assisted analysis of computed tomography scan images may reduce variability of and improve consistency in the measurement and clinical management of lung nodules. Artificial intelligence may increase nodule and cancer detection but may also increase the number of patients undergoing computed tomography surveillance unnecessarily. No direct comparative evidence was found, and nor was any direct evidence found on clinical outcomes and cost-effectiveness. Artificial intelligence-assisted image analysis may be cost-effective in screening for lung cancer but not for symptomatic populations. However, reliable estimates of cost-effectiveness cannot be obtained with current evidence. Study registration This study is registered as PROSPERO CRD42021298449. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme (NIHR award ref: NIHR135325) and is published in full in Health Technology Assessment; Vol. 29, No. 14. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Julia Geppert
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Auguste
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| | - Asra Asgharzadeh
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
- Population Health Science, University of Bristol, Bristol, UK
| | - Hesam Ghiasvand
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
- Research Centre for Healthcare and Communities, Coventry University, Coventry, UK
| | - Mubarak Patel
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| | - Anna Brown
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| | - Surangi Jayakody
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emma Helm
- University Hospitals Coventry and Warwickshire, Coventry, UK
| | - Dan Todkill
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jason Madan
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Chris Stinton
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| | - Daniel Gallacher
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| | - Sian Taylor-Phillips
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| | - Yen-Fu Chen
- Warwick Evidence/Warwick Screening, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Dehdab R, Brendlin A, Werner S, Almansour H, Gassenmaier S, Brendel JM, Nikolaou K, Afat S. Evaluating ChatGPT-4V in chest CT diagnostics: a critical image interpretation assessment. Jpn J Radiol 2024; 42:1168-1177. [PMID: 38867035 PMCID: PMC11442562 DOI: 10.1007/s11604-024-01606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE To assess the diagnostic accuracy of ChatGPT-4V in interpreting a set of four chest CT slices for each case of COVID-19, non-small cell lung cancer (NSCLC), and control cases, thereby evaluating its potential as an AI tool in radiological diagnostics. MATERIALS AND METHODS In this retrospective study, 60 CT scans from The Cancer Imaging Archive, covering COVID-19, NSCLC, and control cases were analyzed using ChatGPT-4V. A radiologist selected four CT slices from each scan for evaluation. ChatGPT-4V's interpretations were compared against the gold standard diagnoses and assessed by two radiologists. Statistical analyses focused on accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), along with an examination of the impact of pathology location and lobe involvement. RESULTS ChatGPT-4V showed an overall diagnostic accuracy of 56.76%. For NSCLC, sensitivity was 27.27% and specificity was 60.47%. In COVID-19 detection, sensitivity was 13.64% and specificity of 64.29%. For control cases, the sensitivity was 31.82%, with a specificity of 95.24%. The highest sensitivity (83.33%) was observed in cases involving all lung lobes. The chi-squared statistical analysis indicated significant differences in Sensitivity across categories and in relation to the location and lobar involvement of pathologies. CONCLUSION ChatGPT-4V demonstrated variable diagnostic performance in chest CT interpretation, with notable proficiency in specific scenarios. This underscores the challenges of cross-modal AI models like ChatGPT-4V in radiology, pointing toward significant areas for improvement to ensure dependability. The study emphasizes the importance of enhancing these models for broader, more reliable medical use.
Collapse
Affiliation(s)
- Reza Dehdab
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.
| | - Andreas Brendlin
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Sebastian Werner
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Jan Michael Brendel
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Tuebingen University Hospital, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany
| |
Collapse
|
3
|
Ng CKC. Generative Adversarial Network (Generative Artificial Intelligence) in Pediatric Radiology: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1372. [PMID: 37628371 PMCID: PMC10453402 DOI: 10.3390/children10081372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Generative artificial intelligence, especially with regard to the generative adversarial network (GAN), is an important research area in radiology as evidenced by a number of literature reviews on the role of GAN in radiology published in the last few years. However, no review article about GAN in pediatric radiology has been published yet. The purpose of this paper is to systematically review applications of GAN in pediatric radiology, their performances, and methods for their performance evaluation. Electronic databases were used for a literature search on 6 April 2023. Thirty-seven papers met the selection criteria and were included. This review reveals that the GAN can be applied to magnetic resonance imaging, X-ray, computed tomography, ultrasound and positron emission tomography for image translation, segmentation, reconstruction, quality assessment, synthesis and data augmentation, and disease diagnosis. About 80% of the included studies compared their GAN model performances with those of other approaches and indicated that their GAN models outperformed the others by 0.1-158.6%. However, these study findings should be used with caution because of a number of methodological weaknesses. For future GAN studies, more robust methods will be essential for addressing these issues. Otherwise, this would affect the clinical adoption of the GAN-based applications in pediatric radiology and the potential advantages of GAN could not be realized widely.
Collapse
Affiliation(s)
- Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; or ; Tel.: +61-8-9266-7314; Fax: +61-8-9266-2377
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
4
|
Computer-Aided Detection of Subsolid Nodules on Chest Computed Tomography: Assessment of Visualization on Vessel-Suppressed Images. J Comput Assist Tomogr 2023; 47:412-417. [PMID: 36877791 DOI: 10.1097/rct.0000000000001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
OBJECTIVES This study aimed to clarify the performance of automatic detection of subsolid nodules by commercially available software on computed tomography (CT) images of various slice thicknesses and compare it with visualization on the accompanying vessel-suppression CT (VS-CT) images. METHODS A total of 95 subsolid nodules from 84 CT examinations of 84 patients were included. The reconstructed CT image series of each case with 3-, 2-, and 1-mm slice thicknesses were loaded into a commercially available software application (ClearRead CT) for automatic detection of subsolid nodules and generation of VS-CT images. Automatic nodule detection sensitivity was assessed for 95 nodules on each series of images acquired at 3 slice thicknesses. Four radiologists subjectively evaluated visual assessment of the nodules on VS-CT. RESULTS ClearRead CT automatically detected 69.5% (66/95 nodules), 68.4% (65/95 nodules), and 70.5% (67/95 nodules) of all subsolid nodules in 3-, 2-, and 1-mm slices, respectively. The detection rate was higher for part-solid nodules than for pure ground-glass nodules at all slice thicknesses. In the visualization assessment on VS-CT, 3 nodules at each slice thickness (3.2%) were judged as invisible, while 26 of 29 (89.7%), 27 of 30 (90.0%), and 25 of 28 (89.3%) nodules, which were missed by computer-aided detection, were judged as visible in 3-, 2-, and 1-mm slices, respectively. CONCLUSIONS The automatic detection rate of subsolid nodules by ClearRead CT was approximately 70% at all slice thicknesses. More than 95% of subsolid nodules were visualized on VS-CT, including nodules undetected by the automated software. Computed tomography acquisition at slices thinner than 3 mm did not confer any benefits.
Collapse
|
5
|
Comparison of single- and dual-energy CT combined with artificial intelligence for the diagnosis of pulmonary nodules. Clin Radiol 2023; 78:e99-e105. [PMID: 36266099 DOI: 10.1016/j.crad.2022.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023]
Abstract
AIM To explore the efficiency of single- and dual-energy computed tomography (CT) with artificial intelligence (AI) for the diagnosis of pulmonary nodules. MATERIALS AND METHODS In a prospective study, 682 patients undergoing a chest CT examination using a dual-energy system were divided randomly into two groups: single-energy mode (group S, n=341) and dual-energy mode (group D, n=341). CT images were first analysed automatically with the AI pulmonary nodule-detection software. CT features including nodule number, lesion size, and nodule type were then analysed by experienced radiologists to establish a reference diagnosis. Subsequently, the accuracy, sensitivity, false-positive rate, and miss rate of AI were calculated. Additionally, image quality and radiation dose were also compared between the two groups. RESULTS The contrast-to-noise ratio data suggested that the image quality of group D was superior to that of group S (0.16 ± 0.10 versus 0.00 ± 0.17), and the radiation dose of group D was lower than that of group S (0.32 ± 0.10 versus 0.62 ± 0.11 mSv.cm). Compared to group S, group D exhibited a significantly higher sensitivity and lower accuracy for nodule identification, size classification, and nodule type (all p<0.05, except for 5-10 mm and calcified nodules). CONCLUSIONS Compared with single-energy CT, dual-energy CT may significantly improve the sensitivity of AI for the diagnosis of pulmonary nodules and is practical for the screening of pulmonary nodules in a large population. In addition, dual-energy CT examination demonstrates improved image quality and is associated with reduced exposure to ionising radiation, but its accuracy is poorer.
Collapse
|
6
|
Characterization of different reconstruction techniques on computer-aided system for detection of pulmonary nodules in lung from low-dose CT protocol. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Murchison JT, Ritchie G, Senyszak D, Nijwening JH, van Veenendaal G, Wakkie J, van Beek EJR. Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population. PLoS One 2022; 17:e0266799. [PMID: 35511758 PMCID: PMC9070877 DOI: 10.1371/journal.pone.0266799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/28/2022] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE In this study, we evaluated a commercially available computer assisted diagnosis system (CAD). The deep learning algorithm of the CAD was trained with a lung cancer screening cohort and developed for detection, classification, quantification, and growth of actionable pulmonary nodules on chest CT scans. Here, we evaluated the CAD in a retrospective cohort of a routine clinical population. MATERIALS AND METHODS In total, a number of 337 scans of 314 different subjects with reported nodules of 3-30 mm in size were included into the evaluation. Two independent thoracic radiologists alternately reviewed scans with or without CAD assistance to detect, classify, segment, and register pulmonary nodules. A third, more experienced, radiologist served as an adjudicator. In addition, the cohort was analyzed by the CAD alone. The study cohort was divided into five different groups: 1) 178 CT studies without reported pulmonary nodules, 2) 95 studies with 1-10 pulmonary nodules, 23 studies from the same patients with 3) baseline and 4) follow-up studies, and 5) 18 CT studies with subsolid nodules. A reference standard for nodules was based on majority consensus with the third thoracic radiologist as required. Sensitivity, false positive (FP) rate and Dice inter-reader coefficient were calculated. RESULTS After analysis of 470 pulmonary nodules, the sensitivity readings for radiologists without CAD and radiologist with CAD, were 71.9% (95% CI: 66.0%, 77.0%) and 80.3% (95% CI: 75.2%, 85.0%) (p < 0.01), with average FP rate of 0.11 and 0.16 per CT scan, respectively. Accuracy and kappa of CAD for classifying solid vs sub-solid nodules was 94.2% and 0.77, respectively. Average inter-reader Dice coefficient for nodule segmentation was 0.83 (95% CI: 0.39, 0.96) and 0.86 (95% CI: 0.51, 0.95) for CAD versus readers. Mean growth percentage discrepancy of readers and CAD alone was 1.30 (95% CI: 1.02, 2.21) and 1.35 (95% CI: 1.01, 4.99), respectively. CONCLUSION The applied CAD significantly increased radiologist's detection of actionable nodules yet also minimally increasing the false positive rate. The CAD can automatically classify and quantify nodules and calculate nodule growth rate in a cohort of a routine clinical population. Results suggest this Deep Learning software has the potential to assist chest radiologists in the tasks of pulmonary nodule detection and management within their routine clinical practice.
Collapse
Affiliation(s)
- John T. Murchison
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (JTM); (JHN)
| | - Gillian Ritchie
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David Senyszak
- Edinburgh Imaging facility QMRI, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Edwin J. R. van Beek
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging facility QMRI, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Current and emerging artificial intelligence applications in chest imaging: a pediatric perspective. Pediatr Radiol 2022; 52:2120-2130. [PMID: 34471961 PMCID: PMC8409695 DOI: 10.1007/s00247-021-05146-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/22/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Artificial intelligence (AI) applications for chest radiography and chest CT are among the most developed applications in radiology. More than 40 certified AI products are available for chest radiography or chest CT. These AI products cover a wide range of abnormalities, including pneumonia, pneumothorax and lung cancer. Most applications are aimed at detecting disease, complemented by products that characterize or quantify tissue. At present, none of the thoracic AI products is specifically designed for the pediatric population. However, some products developed to detect tuberculosis in adults are also applicable to children. Software is under development to detect early changes of cystic fibrosis on chest CT, which could be an interesting application for pediatric radiology. In this review, we give an overview of current AI products in thoracic radiology and cover recent literature about AI in chest radiography, with a focus on pediatric radiology. We also discuss possible pediatric applications.
Collapse
|
9
|
Bianconi F, Fravolini ML, Pizzoli S, Palumbo I, Minestrini M, Rondini M, Nuvoli S, Spanu A, Palumbo B. Comparative evaluation of conventional and deep learning methods for semi-automated segmentation of pulmonary nodules on CT. Quant Imaging Med Surg 2021; 11:3286-3305. [PMID: 34249654 PMCID: PMC8250017 DOI: 10.21037/qims-20-1356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Accurate segmentation of pulmonary nodules on computed tomography (CT) scans plays a crucial role in the evaluation and management of patients with suspicion of lung cancer (LC). When performed manually, not only the process requires highly skilled operators, but is also tiresome and time-consuming. To assist the physician in this task several automated and semi-automated methods have been proposed in the literature. In recent years, in particular, the appearance of deep learning has brought about major advances in the field. METHODS Twenty-four (12 conventional and 12 based on deep learning) semi-automated-'one-click'-methods for segmenting pulmonary nodules on CT were evaluated in this study. The experiments were carried out on two datasets: a proprietary one (383 images from a cohort of 111 patients) and a public one (259 images from a cohort of 100). All the patients had a positive transcript for suspect pulmonary nodules. RESULTS The methods based on deep learning clearly outperformed the conventional ones. The best performance [Sørensen-Dice coefficient (DSC)] in the two datasets was, respectively, 0.853 and 0.763 for the deep learning methods, and 0.761 and 0.704 for the traditional ones. CONCLUSIONS Deep learning is a viable approach for semi-automated segmentation of pulmonary nodules on CT scans.
Collapse
Affiliation(s)
- Francesco Bianconi
- Department of Engineering, Università degli Studi di Perugia, Perugia, Italy
| | | | - Sofia Pizzoli
- Department of Engineering, Università degli Studi di Perugia, Perugia, Italy
| | - Isabella Palumbo
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
- Radiotherapy Unit, Perugia General Hospital, Perugia, Italy
| | - Matteo Minestrini
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
- Nuclear Medicine Unit, Perugia General Hospital, Perugia, Italy
| | - Maria Rondini
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, Università degli Studi di Sassari, Sassari, Italy
| | - Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, Università degli Studi di Sassari, Sassari, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, Università degli Studi di Sassari, Sassari, Italy
| | - Barbara Palumbo
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
- Nuclear Medicine Unit, Perugia General Hospital, Perugia, Italy
| |
Collapse
|
10
|
Hsu HH, Ko KH, Chou YC, Wu YC, Chiu SH, Chang CK, Chang WC. Performance and reading time of lung nodule identification on multidetector CT with or without an artificial intelligence-powered computer-aided detection system. Clin Radiol 2021; 76:626.e23-626.e32. [PMID: 34023068 DOI: 10.1016/j.crad.2021.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
AIM To compare the performance and reading time of different readers using automatic artificial intelligence (AI)-powered computer-aided detection (CAD) to detect lung nodules in different reading modes. MATERIALS AND METHODS One hundred and fifty multidetector computed tomography (CT) datasets containing 340 nodules ≤10 mm in diameter were collected retrospectively. A CAD with vessel-suppressed function was used to interpret the images. Three junior and three senior readers were assigned to read (1) CT images without CAD, (2) second-read using CAD in which CAD was applied only after initial unassisted assessment, and (3) a concurrent read with CAD in which CAD was applied at the start of assessment. Diagnostic performances and reading times were compared using analysis of variance. RESULTS For all readers, the mean sensitivity improved from 64% (95% confidence interval [CI]: 62%, 66%) for the without-CAD mode to 82% (95% CI: 80%, 84%) for the second-reading mode and to 80% (95% CI: 79%, 82%) for the concurrent-reading mode (p<0.001). There was no significant difference between the two modes in terms of the mean sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) for both junior and senior readers and all readers (p>0.05). The reading time of all readers was significantly shorter for the concurrent-reading mode (124 ± 25 seconds) compared to without CAD (156 ± 34 seconds; p<0.001) and the second-reading mode (197 ± 46 seconds; p<0.001). CONCLUSION In CAD for lung nodules at CT, the second-reading mode and concurrent-reading mode may improve detection performance for all readers in both screening and clinical routine practice. Concurrent use of CAD is more efficient for both junior and senior readers.
Collapse
Affiliation(s)
- H-H Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - K-H Ko
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Y-C Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Y-C Wu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - S-H Chiu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - C-K Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - W-C Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Mao Q, Zhao S, Tong D, Su S, Li Z, Cheng X. Hessian-MRLoG: Hessian information and multi-scale reverse LoG filter for pulmonary nodule detection. Comput Biol Med 2021; 131:104272. [PMID: 33636420 DOI: 10.1016/j.compbiomed.2021.104272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/29/2022]
Abstract
Computer-aided detection (CADe) of pulmonary nodules is an effective approach for early detection of lung cancer. However, due to the low contrast of lung computed tomography (CT) images, the interference of blood vessels and classifications, CADe has the problems of low detection rate and high false-positive rate (FPR). To solve these problems, a novel method using Hessian information and multi-scale reverse Laplacian of Gaussian (LoG) (Hessian-MRLoG) is proposed and developed in this work. Also, since the intensity distribution of the LoG operator and the lung nodule in CT images are inconsistent, and their shapes are mismatched, a multi-scale reverse Laplacian of Gaussian (MRLoG) is constructed. In addition, in order to enhance the effectiveness of target detection, the second-order partial derivatives of MRLoG are partially adjusted by introducing an adjustment factor. On this basis, the Hessian-MRLoG model is developed, and a novel elliptic filter is designed. Ultimately, in this study, the method of Hessian-MRLoG filtering is proposed and developed for pulmonary nodule detection. To verify its effectiveness and accuracy, the proposed method was used to analyze the LUNA16 dataset. The experimental results revealed that the proposed method had an accuracy of 93.6% and produced 1.0 false positives per scan (FPs/scan), indicating that the proposed method can improve the detection rate and significantly reduce the FPR. Therefore, the proposed method has the potential for application in the detection, localization and labeling of other lesion areas.
Collapse
Affiliation(s)
- Qi Mao
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China; College of Information Science and Technology, Donghua University, Shanghai, 201620, China.
| | - Shuguang Zhao
- College of Information Science and Technology, Donghua University, Shanghai, 201620, China
| | - Dongbing Tong
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Shengchao Su
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Zhiwei Li
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China; College of Information Science and Technology, Donghua University, Shanghai, 201620, China
| | - Xiang Cheng
- Computer Department, Jingdezhen Ceramic Institute, Jingdezhen, 333403, China
| |
Collapse
|
12
|
Takaishi T, Ozawa Y, Bando Y, Yamamoto A, Okochi S, Suzuki H, Shibamoto Y. Incorporation of a computer-aided vessel-suppression system to detect lung nodules in CT images: effect on sensitivity and reading time in routine clinical settings. Jpn J Radiol 2020; 39:159-164. [PMID: 32940850 DOI: 10.1007/s11604-020-01043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate whether a computer-aided vessel-suppression system improves lung nodule detection in routine clinical settings. MATERIALS AND METHODS We used computer software that automatically suppresses pulmonary vessels on chest CT while preserving pulmonary nodules. Sixty-one chest CT images were included in our study. Three radiologists independently read either standard CT images alone or both computer-aided CT and standard CT images randomly to detect a pulmonary nodule ≥ 4 mm in diameter. After an interval of at least 15 days to avoid recall bias, the three radiologists interpreted the counterpart images of the same patients. The reference standard was decided by an expert panel. The primary endpoint was sensitivity. The secondary endpoint was interpretation time. RESULTS The average sensitivity improved with computer-aided CT (72% for standard CT vs. 84% for computer-aided CT, p = 0.02). There was no difference in the false-positive rate (21% for both standard CT and computer-aided CT, p = 0.98). Although the average reading time was 9.5% longer for computer-aided plus standard CT compared with standard CT alone, the difference was not significant (p = 0.11). CONCLUSION Vessel-suppressed CT images helped radiologists to improve the sensitivity of pulmonary nodule detection without compromising the false-positive rate.
Collapse
Affiliation(s)
- Taku Takaishi
- Konan Kosei Hospital, Takayacho-Omatsubara 137, Konan, Aichi, Japan.
| | - Yoshiyuki Ozawa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuya Bando
- Konan Kosei Hospital, Takayacho-Omatsubara 137, Konan, Aichi, Japan
| | - Akiko Yamamoto
- Konan Kosei Hospital, Takayacho-Omatsubara 137, Konan, Aichi, Japan
| | - Sachiko Okochi
- Konan Kosei Hospital, Takayacho-Omatsubara 137, Konan, Aichi, Japan
| | - Hirochika Suzuki
- Konan Kosei Hospital, Takayacho-Omatsubara 137, Konan, Aichi, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
13
|
Abstract
OBJECTIVES The objective of this study is to assess the performance of a computer-aided diagnosis (CAD) system (INTACT system) for the automatic classification of high-resolution computed tomography images into 4 radiological diagnostic categories and to compare this with the performance of radiologists on the same task. MATERIALS AND METHODS For the comparison, a total of 105 cases of pulmonary fibrosis were studied (54 cases of nonspecific interstitial pneumonia and 51 cases of usual interstitial pneumonia). All diagnoses were interstitial lung disease board consensus diagnoses (radiologically or histologically proven cases) and were retrospectively selected from our database. Two subspecialized chest radiologists made a consensual ground truth radiological diagnosis, according to the Fleischner Society recommendations. A comparison analysis was performed between the INTACT system and 2 other radiologists with different years of experience (readers 1 and 2). The INTACT system consists of a sequential pipeline in which first the anatomical structures of the lung are segmented, then the various types of pathological lung tissue are identified and characterized, and this information is then fed to a random forest classifier able to recommend a radiological diagnosis. RESULTS Reader 1, reader 2, and INTACT achieved similar accuracy for classifying pulmonary fibrosis into the original 4 categories: 0.6, 0.54, and 0.56, respectively, with P > 0.45. The INTACT system achieved an F-score (harmonic mean for precision and recall) of 0.56, whereas the 2 readers, on average, achieved 0.57 (P = 0.991). For the pooled classification (2 groups, with and without the need for biopsy), reader 1, reader 2, and CAD had similar accuracies of 0.81, 0.70, and 0.81, respectively. The F-score was again similar for the CAD system and the radiologists. The CAD system and the average reader reached F-scores of 0.80 and 0.79 (P = 0.898). CONCLUSIONS We found that a computer-aided detection algorithm based on machine learning was able to classify idiopathic pulmonary fibrosis with similar accuracy to a human reader.
Collapse
|