1
|
Ahmed Jasim A, Ata O, Hussein Salman O. Multisource Data Framework for Prehospital Emergency Triage in Real-Time IoMT-Based Telemedicine Systems. Int J Med Inform 2024; 192:105608. [PMID: 39222600 DOI: 10.1016/j.ijmedinf.2024.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The Internet of Medical Things (IoMT) has revolutionized telemedicine by enabling the remote monitoring and management of patient care. Nevertheless, the process of regeneration presents the difficulty of effectively prioritizing the information of emergency patients in light of the extensive amount of data generated by several integrated health care devices. The main goal of this study is to be improving the procedure of prioritizing emergency patients by implementing the Real-time Triage Optimization Framework (RTOF), an innovative method that utilizes diverse data from the Internet of Medical Things (IoMT). METHODS The study's methodology utilized a variety of Internet of Medical Things (IoMT) data, such as sensor data and texts derived from electronic medical records. Tier 1 supplies sensor and textual data, and Tier 3 imports textual data from electronic medical records. We employed our methodologies to handle and examine data from a sample of 100,000 patients afflicted with hypertension and heart disease, employing artificial intelligence algorithms. We utilized five machine-learning algorithms to enhance the accuracy of triage. RESULTS The RTOF approach has remarkable efficacy in a simulated telemedicine environment, with a triage accuracy rate of 98%. The Random Forest algorithm exhibited superior performance compared to the other approaches under scrutiny. The performance characteristics attained were an accuracy rate of 98%, a precision rate of 99%, a sensitivity rate of 98%, and a specificity rate of 100%. The findings show a significant improvement compared to the present triage methods. CONCLUSIONS The efficiency of RTOF surpasses that of existing triage frameworks, showcasing its significant ability to enhance the quality and efficacy of telemedicine solutions. This work showcases substantial enhancements compared to existing triage approaches, while also providing a scalable approach to tackle hospital congestion and optimize resource allocation in real-time. The results of our study emphasize the capacity of RTOF to mitigate hospital overcrowding, expedite medical intervention, and enable the creation of adaptable telemedicine networks. This study highlights potential avenues for further investigation into the integration of the Internet of Medical Things (IoMT) with machine learning to develop cutting-edge medical technologies.
Collapse
Affiliation(s)
- Abdulrahman Ahmed Jasim
- Dept. of Electrical and Computer Engineering, Altinbas University, Istanbul, Turkey; Collage of Engineering, Al-Iraqia University, Baghdad, Iraq.
| | - Oguz Ata
- Dept. of Electrical and Computer Engineering, Altinbas University, Istanbul, Turkey.
| | | |
Collapse
|
2
|
Shiferaw KB, Wali P, Waltemath D, Zeleke AA. Navigating the AI frontiers in cardiovascular research: a bibliometric exploration and topic modeling. Front Cardiovasc Med 2024; 10:1308668. [PMID: 38235288 PMCID: PMC10793658 DOI: 10.3389/fcvm.2023.1308668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a promising field in cardiovascular disease (CVD) research, offering innovative approaches to enhance diagnosis, treatment, and patient outcomes. In this study, we conducted bibliometric analysis combined with topic modeling to provide a comprehensive overview of the AI research landscape in CVD. Our analysis included 23,846 studies from Web of Science and PubMed, capturing the latest advancements and trends in this rapidly evolving field. By employing LDA (Latent Dirichlet Allocation) we identified key research themes, trends, and collaborations within the AI-CVD domain. The findings revealed the exponential growth of AI-related research in CVD, underscoring its immense potential to revolutionize cardiovascular healthcare. The annual scientific publication of machine learning papers in CVD increases continuously and significantly since 2016, with an overall annual growth rate of 22.8%. Almost half (46.2%) of the growth happened in the last 5 years. USA, China, India, UK and Korea were the top five productive countries in number of publications. UK, Germany and Australia were the most collaborative countries with a multiple country publication (MCP) value of 42.8%, 40.3% and 40.0% respectively. We observed the emergence of twenty-two distinct research topics, including "stroke and robotic rehabilitation therapy," "robotic-assisted cardiac surgery," and "cardiac image analysis," which persisted as major topics throughout the years. Other topics, such as "retinal image analysis and CVD" and "biomarker and wearable signal analyses," have recently emerged as dominant areas of research in cardiovascular medicine. Convolutional neural network appears to be the most mentioned algorithm followed by LSTM (Long Short-Term Memory) and KNN (K-Nearest Neighbours). This indicates that the future direction of AI cardiovascular research is predominantly directing toward neural networks and image analysis. As AI continues to shape the landscape of CVD research, our study serves as a comprehensive guide for researchers, practitioners, and policymakers, providing valuable insights into the current state of AI in CVD research. This study offers a deep understanding of research trends and paves the way for future directions to maximiz the potential of AI to effectively combat cardiovascular diseases.
Collapse
Affiliation(s)
- Kirubel Biruk Shiferaw
- Department of Medical Informatics, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | | | | | | |
Collapse
|
3
|
Newgard CD, Babcock SR, Song X, Remick KE, Gausche-Hill M, Lin A, Malveau S, Mann NC, Nathens AB, Cook JNB, Jenkins PC, Burd RS, Hewes HA, Glass NE, Jensen AR, Fallat ME, Ames SG, Salvi A, McConnell KJ, Ford R, Auerbach M, Bailey J, Riddick TA, Xin H, Kuppermann N. Emergency Department Pediatric Readiness Among US Trauma Centers: A Machine Learning Analysis of Components Associated With Survival. Ann Surg 2023; 278:e580-e588. [PMID: 36538639 PMCID: PMC10149578 DOI: 10.1097/sla.0000000000005741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We used machine learning to identify the highest impact components of emergency department (ED) pediatric readiness for predicting in-hospital survival among children cared for in US trauma centers. BACKGROUND ED pediatric readiness is associated with improved short-term and long-term survival among injured children and part of the national verification criteria for US trauma centers. However, the components of ED pediatric readiness most predictive of survival are unknown. METHODS This was a retrospective cohort study of injured children below 18 years treated in 458 trauma centers from January 1, 2012, through December 31, 2017, matched to the 2013 National ED Pediatric Readiness Assessment and the American Hospital Association survey. We used machine learning to analyze 265 potential predictors of survival, including 152 ED readiness variables, 29 patient variables, and 84 ED-level and hospital-level variables. The primary outcome was in-hospital survival. RESULTS There were 274,756 injured children, including 4585 (1.7%) who died. Nine ED pediatric readiness components were associated with the greatest increase in survival: policy for mental health care (+8.8% change in survival), policy for patient assessment (+7.5%), specific respiratory equipment (+7.2%), policy for reduced-dose radiation imaging (+7.0%), physician competency evaluations (+4.9%), recording weight in kilograms (+3.2%), life support courses for nursing (+1.0%-2.5%), and policy on pediatric triage (+2.5%). There was a 268% improvement in survival when the 5 highest impact components were present. CONCLUSIONS ED pediatric readiness components related to specific policies, personnel, and equipment were the strongest predictors of pediatric survival and worked synergistically when combined.
Collapse
Affiliation(s)
- Craig D. Newgard
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
| | - Sean R. Babcock
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xubo Song
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon
| | - Katherine E. Remick
- Departments of Pediatrics and Surgery, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Marianne Gausche-Hill
- Los Angeles County Emergency Medical Services, Harbor-UCLA Medical Center, Torrance, California
| | - Amber Lin
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
| | - Susan Malveau
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
| | - N. Clay Mann
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Avery B. Nathens
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jennifer N. B. Cook
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
| | - Peter C. Jenkins
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Randall S. Burd
- Division of Trauma and Burn Surgery, Center for Surgical Care, Children’s National Hospital, Washington, District of Columbia
| | - Hilary A. Hewes
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Nina E. Glass
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Aaron R. Jensen
- Department of Surgery, University of California, San Francisco, Benioff Children’s Hospitals, San Francisco, California
| | - Mary E. Fallat
- Department of Surgery, University of Louisville School of Medicine, Norton Children’s Hospital, Louisville, Kentucky
| | - Stefanie G. Ames
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Apoorva Salvi
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
| | - K. John McConnell
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
- Center for Health Systems Effectiveness, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
| | - Rachel Ford
- Oregon Emergency Medical Services for Children Program, Oregon Health Authority, Portland, Oregon
| | - Marc Auerbach
- Departments of Pediatrics and Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jessica Bailey
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
| | - Tyne A. Riddick
- Oregon Health & Science University-Portland State University, School of Public Health, Portland, Oregon
| | - Haichang Xin
- Center for Policy and Research in Emergency Medicine, Department of Emergency Medicine, Oregon Health & Science University, Portland, Oregon
| | - Nathan Kuppermann
- Departments of Emergency Medicine and Pediatrics, University of California, Davis School of Medicine, Sacramento, California
| |
Collapse
|
4
|
Choi A, Choi SY, Chung K, Chung HS, Song T, Choi B, Kim JH. Development of a machine learning-based clinical decision support system to predict clinical deterioration in patients visiting the emergency department. Sci Rep 2023; 13:8561. [PMID: 37237057 DOI: 10.1038/s41598-023-35617-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to develop a machine learning-based clinical decision support system for emergency departments based on the decision-making framework of physicians. We extracted 27 fixed and 93 observation features using data on vital signs, mental status, laboratory results, and electrocardiograms during emergency department stay. Outcomes included intubation, admission to the intensive care unit, inotrope or vasopressor administration, and in-hospital cardiac arrest. eXtreme gradient boosting algorithm was used to learn and predict each outcome. Specificity, sensitivity, precision, F1 score, area under the receiver operating characteristic curve (AUROC), and area under the precision-recall curve were assessed. We analyzed 303,345 patients with 4,787,121 input data, resampled into 24,148,958 1 h-units. The models displayed a discriminative ability to predict outcomes (AUROC > 0.9), and the model with lagging 6 and leading 0 displayed the highest value. The AUROC curve of in-hospital cardiac arrest had the smallest change, with increased lagging for all outcomes. With inotropic use, intubation, and intensive care unit admission, the range of AUROC curve change with the leading 6 was the highest according to different amounts of previous information (lagging). In this study, a human-centered approach to emulate the clinical decision-making process of emergency physicians has been adopted to enhance the use of the system. Machine learning-based clinical decision support systems customized according to clinical situations can help improve the quality of care.
Collapse
Affiliation(s)
- Arom Choi
- Department of Emergency Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - So Yeon Choi
- Department of Emergency Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungsoo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Soo Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taeyoung Song
- LG Electronics, 128 Yeoui-daero, Yeongdeungpo-gu, Seoul, 07336, Republic of Korea
| | - Byunghun Choi
- LG Electronics, 128 Yeoui-daero, Yeongdeungpo-gu, Seoul, 07336, Republic of Korea
| | - Ji Hoon Kim
- Department of Emergency Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Kao CL, Chien LC, Wang MC, Tang JS, Huang PC, Chuang CC, Shih CL. The development of new remote technologies in disaster medicine education: A scoping review. Front Public Health 2023; 11:1029558. [PMID: 37033011 PMCID: PMC10080133 DOI: 10.3389/fpubh.2023.1029558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Background Remote teaching and online learning have significantly changed the responsiveness and accessibility after the COVID-19 pandemic. Disaster medicine (DM) has recently gained prominence as a critical issue due to the high frequency of worldwide disasters, especially in 2021. The new artificial intelligence (AI)-enhanced technologies and concepts have recently progressed in DM education. Objectives The aim of this article is to familiarize the reader with the remote technologies that have been developed and used in DM education over the past 20 years. Literature scoping reviews Mobile edge computing (MEC), unmanned aerial vehicles (UAVs)/drones, deep learning (DL), and visual reality stimulation, e.g., head-mounted display (HMD), are selected as promising and inspiring designs in DM education. Methods We performed a comprehensive review of the literature on the remote technologies applied in DM pedagogy for medical, nursing, and social work, as well as other health discipline students, e.g., paramedics. Databases including PubMed (MEDLINE), ISI Web of Science (WOS), EBSCO (EBSCO Essentials), Embase (EMB), and Scopus were used. The sourced results were recorded in a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart and followed in accordance with the PRISMA extension Scoping Review checklist. We included peer-reviewed articles, Epubs (electronic publications such as databases), and proceedings written in English. VOSviewer for related keywords extracted from review articles presented as a tabular summary to demonstrate their occurrence and connections among these DM education articles from 2000 to 2022. Results A total of 1,080 research articles on remote technologies in DM were initially reviewed. After exclusion, 64 articles were included in our review. Emergency remote teaching/learning education, remote learning, online learning/teaching, and blended learning are the most frequently used keywords. As new remote technologies used in emergencies become more advanced, DM pedagogy is facing more complex problems. Discussions Artificial intelligence-enhanced remote technologies promote learning incentives for medical undergraduate students or graduate professionals, but the efficacy of learning quality remains uncertain. More blended AI-modulating pedagogies in DM education could be increasingly important in the future. More sophisticated evaluation and assessment are needed to implement carefully considered designs for effective DM education.
Collapse
Affiliation(s)
- Chia-Lung Kao
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Regional Emergency Medical Operations Center-Tainan Branch, Ministry of Health and Welfare, Taipei City, Taiwan
| | - Li-Chien Chien
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Regional Emergency Medical Operations Center-Tainan Branch, Ministry of Health and Welfare, Taipei City, Taiwan
| | - Mei-Chin Wang
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Jing-Shia Tang
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Po-Chang Huang
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chang Chuang
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Regional Emergency Medical Operations Center-Tainan Branch, Ministry of Health and Welfare, Taipei City, Taiwan
| | - Chung-Liang Shih
- Department of Medical Affairs, Ministry of Health and Welfare, Taipei City, Taiwan
- Department of Emergency Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
6
|
Peng HT, Siddiqui MM, Rhind SG, Zhang J, da Luz LT, Beckett A. Artificial intelligence and machine learning for hemorrhagic trauma care. Mil Med Res 2023; 10:6. [PMID: 36793066 PMCID: PMC9933281 DOI: 10.1186/s40779-023-00444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Artificial intelligence (AI), a branch of machine learning (ML) has been increasingly employed in the research of trauma in various aspects. Hemorrhage is the most common cause of trauma-related death. To better elucidate the current role of AI and contribute to future development of ML in trauma care, we conducted a review focused on the use of ML in the diagnosis or treatment strategy of traumatic hemorrhage. A literature search was carried out on PubMed and Google scholar. Titles and abstracts were screened and, if deemed appropriate, the full articles were reviewed. We included 89 studies in the review. These studies could be grouped into five areas: (1) prediction of outcomes; (2) risk assessment and injury severity for triage; (3) prediction of transfusions; (4) detection of hemorrhage; and (5) prediction of coagulopathy. Performance analysis of ML in comparison with current standards for trauma care showed that most studies demonstrated the benefits of ML models. However, most studies were retrospective, focused on prediction of mortality, and development of patient outcome scoring systems. Few studies performed model assessment via test datasets obtained from different sources. Prediction models for transfusions and coagulopathy have been developed, but none is in widespread use. AI-enabled ML-driven technology is becoming integral part of the whole course of trauma care. Comparison and application of ML algorithms using different datasets from initial training, testing and validation in prospective and randomized controlled trials are warranted for provision of decision support for individualized patient care as far forward as possible.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, M3K 2C9, Canada.
| | - M Musaab Siddiqui
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, M3K 2C9, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, M3K 2C9, Canada
| | - Jing Zhang
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, M3K 2C9, Canada
| | | | - Andrew Beckett
- St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Royal Canadian Medical Services, Ottawa, K1A 0K2, Canada
| |
Collapse
|
7
|
Ferreras A, Sumalla-Cano S, Martínez-Licort R, Elío I, Tutusaus K, Prola T, Vidal-Mazón JL, Sahelices B, de la Torre Díez I. Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight. J Med Syst 2023; 47:8. [PMID: 36637549 DOI: 10.1007/s10916-022-01904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 01/14/2023]
Abstract
Obesity and overweight has increased in the last year and has become a pandemic disease, the result of sedentary lifestyles and unhealthy diets rich in sugars, refined starches, fats and calories. Machine learning (ML) has proven to be very useful in the scientific community, especially in the health sector. With the aim of providing useful tools to help nutritionists and dieticians, research focused on the development of ML and Deep Learning (DL) algorithms and models is searched in the literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol has been used, a very common technique applied to carry out revisions. In our proposal, 17 articles have been filtered in which ML and DL are applied in the prediction of diseases, in the delineation of treatment strategies, in the improvement of personalized nutrition and more. Despite expecting better results with the use of DL, according to the selected investigations, the traditional methods are still the most used and the yields in both cases fluctuate around positive values, conditioned by the databases (transformed in each case) to a greater extent than by the artificial intelligence paradigm used. Conclusions: An important compilation is provided for the literature in this area. ML models are time-consuming to clean data, but (like DL) they allow automatic modeling of large volumes of data which makes them superior to traditional statistics.
Collapse
Affiliation(s)
- Antonio Ferreras
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén 15, Valladolid, 47011, Spain
| | - Sandra Sumalla-Cano
- Research Group on Foods, Nutritional Biochemistry and Health, European University of the Atlantic, Santander, 39011, Spain
- Department of Health, Nutrition and Sport, Iberoamerican International University, Campeche, 24560, Mexico
| | - Rosmeri Martínez-Licort
- Telemedicine and eHealth Research Group, Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén 15, Valladolid, 47011, Spain.
- Department of Telecommunications, University of Pinar del Río, Pinar del Río, Cuba.
| | - Iñaki Elío
- Research Group on Foods, Nutritional Biochemistry and Health, European University of the Atlantic, Santander, 39011, Spain
- Department of Health, Nutrition and Sport, Iberoamerican International University, Campeche, 24560, Mexico
| | - Kilian Tutusaus
- Higher Polytechnic School, European University of the Atlantic, Santander, 39011, Spain
- Higher Polytechnic School, Iberoamerican International University, Campeche, 24560, Mexico
| | - Thomas Prola
- Faculty of Social Sciences and Humanites, European University of the Atlantic, Santander, Spain
| | - Juan Luís Vidal-Mazón
- Higher Polytechnic School, European University of the Atlantic, Santander, 39011, Spain
- Higher Polytechnic School, International University of Cuanza, Estrada nacional 250, Cuito-Bié, Angola
- Higher Polytechnic School, Iberoamerican International University, Arecibo, 00613, Puerto Rico
| | - Benjamín Sahelices
- Research group GCME, Department of Computer Science, University of Valladolid, Paseo de Belén 15, Valladolid, 47011, Spain
| | - Isabel de la Torre Díez
- Department of Signal Theory and Communications and Telematics Engineering, University of Valladolid, Paseo de Belén 15, Valladolid, 47011, Spain
| |
Collapse
|
8
|
Barakat N, Awad M, Abu-Nabah BA. A machine learning approach on chest X-rays for pediatric pneumonia detection. Digit Health 2023; 9:20552076231180008. [PMID: 37312953 PMCID: PMC10259147 DOI: 10.1177/20552076231180008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023] Open
Abstract
Background According to the World Health Organization (WHO), pneumonia is the leading infectious cause of death in children below 5 years old. Hence, the early detection of pediatric pneumonia is crucial to reduce its morbidity and mortality rates. Even though chest radiography is the most commonly employed modality for pneumonia detection, recent studies highlight the existence of poor interobserver agreement in the chest X-ray interpretation of healthcare practitioners when it comes to diagnosing pediatric pneumonia. Thus, there is a significant need for automating the detection process to minimize the potential human error. Since Artificial Intelligence tools such as Deep Learning (DL) and Machine Learning (ML) have the potential to automate disease detection, many researchers explored how such tools can be implemented to detect pneumonia in chest X-rays. Notably, the majority of efforts tackled this problem from a DL point of view. However, ML has shown a higher potential for medical interpretability while being less computationally demanding than DL. Objective The aim of this paper is to automate the early detection process of pediatric pneumonia using ML as it is less computationally demanding than DL. Methods The proposed approach entails performing data augmentation to balance the classes of the utilized dataset, optimizing the feature extraction scheme, and evaluating the performance of several ML models. Moreover, the performance of this approach is compared to a TL benchmark to evaluate its candidacy. Results Using the proposed approach, the Quadratic SVM model yielded an accuracy of 97.58%, surpassing the accuracies reported in the current ML literature. In addition, this model classification time was significantly smaller than that of the TL benchmark. Conclusion The results strongly support the candidacy of the proposed approach in reliably detecting pediatric pneumonia.
Collapse
Affiliation(s)
- Natali Barakat
- Engineering Systems Management Department, American University of Sharjah, College of Engineering, Sharjah, United Arab Emirates
| | - Mahmoud Awad
- Industrial Engineering Department, American University of Sharjah, College of Engineering, Sharjah, United Arab Emirates
| | - Bassam A Abu-Nabah
- Mechanical Engineering Department, American University of Sharjah, College of Engineering, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Sabharwal R, Miah SJ, Fosso Wamba S. Extending artificial intelligence research in the clinical domain: a theoretical perspective. ANNALS OF OPERATIONS RESEARCH 2022:1-32. [PMID: 36407943 PMCID: PMC9641309 DOI: 10.1007/s10479-022-05035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Academic research to the utilization of artificial intelligence (AI) has been proliferated over the past few years. While AI and its subsets are continuously evolving in the fields of marketing, social media and finance, its application in the daily practice of clinical care is insufficiently explored. In this systematic review, we aim to landscape various application areas of clinical care in terms of the utilization of machine learning to improve patient care. Through designing a specific smart literature review approach, we give a new insight into existing literature identified with AI technologies in the clinical domain. Our review approach focuses on strategies, algorithms, applications, results, qualities, and implications using the Latent Dirichlet Allocation topic modeling. A total of 305 unique articles were reviewed, with 115 articles selected using Latent Dirichlet Allocation topic modeling, meeting our inclusion criteria. The primary result of this approach incorporates a proposition for future research direction, abilities, and influence of AI technologies and displays the areas of disease management in clinics. This research concludes with disease administrative ramifications, limitations, and directions for future research.
Collapse
Affiliation(s)
- Renu Sabharwal
- Newcastle Business School, The University of Newcastle, Callaghan, NSW Australia
| | - Shah J. Miah
- Newcastle Business School, The University of Newcastle, Callaghan, NSW Australia
| | | |
Collapse
|
10
|
Choi A, Chung K, Chung SP, Lee K, Hyun H, Kim JH. Advantage of Vital Sign Monitoring Using a Wireless Wearable Device for Predicting Septic Shock in Febrile Patients in the Emergency Department: A Machine Learning-Based Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 22:7054. [PMID: 36146403 PMCID: PMC9504566 DOI: 10.3390/s22187054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Intermittent manual measurement of vital signs may not rapidly predict sepsis development in febrile patients admitted to the emergency department (ED). We aimed to evaluate the predictive performance of a wireless monitoring device that continuously measures heart rate (HR) and respiratory rate (RR) and a machine learning analysis in febrile but stable patients in the ED. We analysed 468 patients (age, ≥18 years; training set, n = 277; validation set, n = 93; test set, n = 98) having fever (temperature >38 °C) and admitted to the isolation care unit of the ED. The AUROC of the fragmented model with device data was 0.858 (95% confidence interval [CI], 0.809−0.908), and that with manual data was 0.841 (95% CI, 0.789−0.893). The AUROC of the accumulated model with device data was 0.861 (95% CI, 0.811−0.910), and that with manual data was 0.853 (95% CI, 0.803−0.903). Fragmented and accumulated models with device data detected clinical deterioration in febrile patients at risk of septic shock 9 h and 5 h 30 min earlier, respectively, than those with manual data. Continuous vital sign monitoring using a wearable device could accurately predict clinical deterioration and reduce the time to recognise potential clinical deterioration in stable ED patients with fever.
Collapse
Affiliation(s)
- Arom Choi
- Department of Emergency Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Kyungsoo Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Sung Phil Chung
- Department of Emergency Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Kwanhyung Lee
- AITRICS, 28 Hyoryeong-ro 77-gil, Seocho-gu, Seoul 06627, Korea
| | - Heejung Hyun
- AITRICS, 28 Hyoryeong-ro 77-gil, Seocho-gu, Seoul 06627, Korea
| | - Ji Hoon Kim
- Department of Emergency Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|