1
|
Zokay M, Saylani H. Blind Separation of Skin Chromophores from Multispectral Dermatological Images. Diagnostics (Basel) 2024; 14:2288. [PMID: 39451611 PMCID: PMC11506256 DOI: 10.3390/diagnostics14202288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Based on Blind Source Separation and the use of multispectral imaging, the new approach we propose in this paper aims to improve the estimation of the concentrations of the main skin chromophores (melanin, oxyhemoglobin and deoxyhemoglobin), while considering shading as a fully-fledged source. Methods: In this paper, we demonstrate that the use of the Infra-Red spectral band, in addition to the traditional RGB spectral bands of dermatological images, allows us to model the image provided by each spectral band as a mixture of the concentrations of the three chromophores in addition to that of the shading, which are estimated through four steps using Blind Source Separation. Results: We studied the performance of our new method on a database of real multispectral dermatological images of melanoma by proposing a new quantitative performances measurement criterion based on mutual information. We then validated these performances on a database of multispectral dermatological images that we simulated using our own new protocol. Conclusions: All the results obtained demonstrated the effectiveness of our new approach for estimating the concentrations of the skin chromophores from a multispectral dermatological image, compared to traditional approaches that consist of using only the RGB image by neglecting shading.
Collapse
|
2
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
3
|
Martines-Arano H, Valdivia-Flores A, Castillo-Cruz J, García-Pérez BE, Torres-Torres C. Spatially modulated ablation driven by chaotic attractors in human lung epithelial cancer cells. Biomed Phys Eng Express 2024; 10:035041. [PMID: 38569484 DOI: 10.1088/2057-1976/ad39f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
A significant modification in photoinduced energy transfer in cancer cells is reported by the assistance of a dynamic modulation of the beam size of laser irradiation. Human lung epithelial cancer cells in monolayer form were studied. In contrast to the quantum and thermal ablation effect promoted by a standard focused Gaussian beam, a spatially modulated beam can caused around 15% of decrease in the ablation threshold and formation of a ring-shaped distribution of the photothermal transfer effect. Optical irradiation was conducted in A549 cells by a 532 nm single-beam emerging from a Nd:YVO4 system. Ablation effects derived from spatially modulated convergent waves were controlled by an electrically focus-tunable lens. The proposed chaotic behavior of the spatial modulation followed an Arneodo chaotic oscillator. Fractional dynamic thermal transport was analyzed in order to describe photoenergy in propagation through the samples. Immediate applications of chaos theory for developing phototechnology devices driving biological functions or phototherapy treatments can be considered.
Collapse
Affiliation(s)
- Hilario Martines-Arano
- Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, 72592, Puebla, Puebla, Mexico
| | - Alejandra Valdivia-Flores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, 11340, Mexico
| | - Juan Castillo-Cruz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, 11340, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, 11340, Mexico
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Ciudad de México, 07738, Mexico
| |
Collapse
|
4
|
Kaikousidis C, Dokoumetzidis A. Implementation of non-linear mixed effects models defined by fractional differential equations. J Pharmacokinet Pharmacodyn 2023:10.1007/s10928-023-09851-1. [PMID: 36944853 PMCID: PMC10374488 DOI: 10.1007/s10928-023-09851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Fractional differential equations (FDEs), i.e. differential equations with derivatives of non-integer order, can describe certain experimental datasets more accurately than classic models and have found application in pharmacokinetics (PKs), but wider applicability has been hindered by the lack of appropriate software. In the present work an extension of NONMEM software is introduced, as a FORTRAN subroutine, that allows the definition of nonlinear mixed effects (NLME) models with FDEs. The new subroutine can handle arbitrary user defined linear and nonlinear models with multiple equations, and multiple doses and can be integrated in NONMEM workflows seamlessly, working well with third party packages. The performance of the subroutine in parameter estimation exercises, with simple linear and nonlinear (Michaelis-Menten) fractional PK models has been evaluated by simulations and an application to a real clinical dataset of diazepam is presented. In the simulation study, model parameters were estimated for each of 100 simulated datasets for the two models. The relative mean bias (RMB) and relative root mean square error (RRMSE) were calculated in order to assess the bias and precision of the methodology. In all cases both RMB and RRMSE were below 20% showing high accuracy and precision for the estimates. For the diazepam application the fractional model that best described the drug kinetics was a one-compartment linear model which had similar performance, according to diagnostic plots and Visual Predictive Check, to a three-compartment classic model, but including four less parameters than the latter. To the best of our knowledge, it is the first attempt to use FDE systems in an NLME framework, so the approach could be of interest to other disciplines apart from PKs.
Collapse
Affiliation(s)
- Christos Kaikousidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Aristides Dokoumetzidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
| |
Collapse
|
5
|
Miskovic-Stankovic V, Janev M, Atanackovic TM. Two compartmental fractional derivative model with general fractional derivative. J Pharmacokinet Pharmacodyn 2022; 50:79-87. [PMID: 36478532 DOI: 10.1007/s10928-022-09834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
This study presents a new two compartmental model with, recently defined General fractional derivative. We review that concept of General fractional derivative and use the kernel function that generalizes the classical Caputo derivative in a mathematically consistent way. Next we use this model to study the release of antibiotic gentamicin in poly (vinyl alcohol)/gentamicin(PVA/Gent) hydrogel aimed for wound dressing in medical treatment of deep chronical wounds. The PVA/Gent hydrogel was prepared by physical cross linking of poly (vinyl alcohol) dispersion using freezing-thawing method, and then was swollen in gentamicin solution at 37 °C during 48 h. The concentration of released gentamicin was determined using a high-performance liquid chromatography coupled with mass spectrometer. The advantage of this model is the existence of new parameters in the definition of fractional derivative, as compared with classical fractional compartmental models. The model proposed here in the special case reduces to the classical (integer order) linear two compartmental model as well as classical fractional order two compartmental model since it has more parameters that are determined from the experimental results.
Collapse
Affiliation(s)
- Vesna Miskovic-Stankovic
- Faculty of Ecology and Environmental Protection, University Union - Nikola Tesla, Cara Dusana 62-64, 11000, Belgrade, Serbia
| | - Marko Janev
- Mathematical Institute, Serbain Academy of Arts and Sciences, Kneza Mihaila 35, 11000, Belagrade Belgrade, Serbia
| | - Teodor M Atanackovic
- Serbian Academy of Arts and Sciences, Branch in Novi Sad, Nikole Pasica 6, 21000, Novi Sad, Serbia.
| |
Collapse
|
6
|
Fedorowicz J, Bazar D, Brankiewicz W, Kapica H, Ciura K, Zalewska-Piątek B, Piątek R, Cal K, Mojsiewicz-Pieńkowska K, Sączewski J. Development of Safirinium dyes for new applications: fluorescent staining of bacteria, human kidney cells, and the horny layer of the epidermis. Sci Rep 2022; 12:15098. [PMID: 36065005 PMCID: PMC9445088 DOI: 10.1038/s41598-022-19262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Low-molecular synthetic fluorophores are convenient tools in bioimaging applications. Several derivatives of Safirinium dyes as well as their reactive N-hydroxysuccinimide (NHS) esters bearing diverse substituents were synthesized and evaluated experimentally in terms of their lipophilicity by means of reverse-phase and immobilized artificial membrane high-performance liquid chromatography. Subsequently, the selected compounds were employed as novel cellular imaging agents for staining Gram-positive and Gram-negative bacteria, human kidney cell line, as well as human skin tissue. The analyzed dyes allowed for visualization of cellular structures such as mitochondria, endoplasmic reticulum, and cellular nuclei. They proved to be useful in fluorescent staining of stratum corneum, especially in the aspect of xenobiotic exposure and its penetration into the skin. The best results were obtained with the use of moderately lipophilic NHS esters of Safirinium Q. The development of Safirinium dyes is a promising alternative for commercially available dyes since the reported molecules have low molecular masses and exhibit efficient staining and remarkable water solubility. Moreover, they are relatively simple and low-cost in synthesis.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), 00014, Helsinki, Finland. .,Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Dagmara Bazar
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416, Gdańsk, Poland
| | - Wioletta Brankiewicz
- Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Hanna Kapica
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416, Gdańsk, Poland
| | - Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416, Gdańsk, Poland.,QSAR Lab Ltd., Trzy Lipy 3 St., 80-172, Gdańsk, Poland
| | - Beata Zalewska-Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Rafał Piątek
- Department of Molecular Biotechnology and Microbiology, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.,BioTechMed Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Krzysztof Cal
- Department of Pharmaceutical Technology, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | | | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
7
|
Abstract
Countries globally trade with tons of waste materials every year, some of which are highly hazardous. This trade admits a network representation of the world-wide waste web, with countries as vertices and flows as directed weighted edges. Here we investigate the main properties of this network by tracking 108 categories of wastes interchanged in the period 2001–2019. Although, most of the hazardous waste was traded between developed nations, a disproportionate asymmetry existed in the flow from developed to developing countries. Using a dynamical model, we simulate how waste stress propagates through the network and affects the countries. We identify 28 countries with low Environmental Performance Index that are at high risk of waste congestion. Therefore, they are at threat of improper handling and disposal of hazardous waste. We find evidence of pollution by heavy metals, by volatile organic compounds and/or by persistent organic pollutants, which are used as chemical fingerprints, due to the improper handling of waste in several of these countries. The 2001–2019 web of international waste trade is investigated, allowing the identification of countries at threat of improper handling and disposal of waste. Chemical tracers are used to identify the environmental impact of waste in these countries.
Collapse
|
8
|
Tailored Pharmacokinetic model to predict drug trapping in long-term anesthesia. J Adv Res 2021; 32:27-36. [PMID: 34484823 PMCID: PMC8139433 DOI: 10.1016/j.jare.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 01/25/2023] Open
Abstract
Introduction In long-term induced general anesthesia cases such as those uniquely defined by the ongoing Covid-19 pandemic context, the clearance of hypnotic and analgesic drugs from the body follows anomalous diffusion with afferent drug trapping and escape rates in heterogeneous tissues. Evidence exists that drug molecules have a preference to accumulate in slow acting compartments such as muscle and fat mass volumes. Currently used patient dependent pharmacokinetic models do not take into account anomalous diffusion resulted from heterogeneous drug distribution in the body with time varying clearance rates. Objectives This paper proposes a mathematical framework for drug trapping estimation in PK models for estimating optimal drug infusion rates to maintain long-term anesthesia in Covid-19 patients. We also propose a protocol for measuring and calibrating PK models, along with a methodology to minimize blood sample collection. Methods We propose a framework enabling calibration of the models during the follow up of Covid-19 patients undergoing anesthesia during their treatment and recovery period in ICU. The proposed model can be easily updated with incoming information from clinical protocols on blood plasma drug concentration profiles. Already available pharmacokinetic and pharmacodynamic models can be then calibrated based on blood plasma concentration measurements. Results The proposed calibration methodology allow to minimize risk for potential over-dosing as clearance rates are updated based on direct measurements from the patient. Conclusions The proposed methodology will reduce the adverse effects related to over-dosing, which allow further increase of the success rate during the recovery period.
Collapse
|
9
|
Asifa, Kumam P, Anwar T, Watthayu W, Shah Z. Double Slip Effects and Heat Transfer Characteristics for Channel Transport of Engine Oil With Titanium and Aluminum Alloy Nanoparticles: A Fractional Study. IEEE ACCESS 2021; 9:52036-52052. [DOI: 10.1109/access.2021.3067937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|