1
|
Zhang H, Ye YT, Deng JL, Zhao P, Mao YF, Chen ZX. Rapid unfolding of pig pancreas α-amylase: Kinetics, activity and structure evolution. Food Chem 2022; 368:130795. [PMID: 34411861 DOI: 10.1016/j.foodchem.2021.130795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
α-Amylase plays an important role in food processing and in-vivo digestion. Many biological functions of α-amylase are affected by unfolding. The pre-steady-state rapid unfolding kinetics of α-amylase remains unknown. In this study, the rapid unfolding kinetics of porcine pancreatic α-amylase (PPA) with guanidine hydrochloride (GdmHCl) were investigated by stopped-flow spectroscopy. Structural characterization of PPA by fluorescence spectroscopy, and molecular dynamics simulation showed that the unfolding process of PPA might start from the internal active center, where the β-sheet structure was destroyed, followed by the exposure of hydrophobic amino acid residues. Further research revealed that GdmHCl denaturized PPA not by complexing with PPA. The surrounding H-bond network of water was changed by GdmHCl. This research improves our understanding of the unfolding kinetics of the PPA on the microsecond scale. It also provides the evidence experimentally of the surrounding water contribution to protein denaturization.
Collapse
Affiliation(s)
- Hai Zhang
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yu-Tong Ye
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jun-Ling Deng
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Pei Zhao
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yu-Fen Mao
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhong-Xiu Chen
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Guo J, Yang XQ, Gu W, Yuan DB, Wang JM, Wu NN. Inhibition of glycinin thermal aggregation by an artificial chaperone sodium dodecyl sulphate. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2011.02891.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Maghsoudi AH, Khodagholi F, Hadi-Alijanvand H, Esfandiarei M, Sabbaghian M, Zakeri Z, Shaerzadeh F, Abtahi S, Maghsoudi N. Homology modeling, docking, molecular dynamics simulation, and structural analyses of coxsakievirus B3 2A protease: an enzyme involved in the pathogenesis of inflammatory myocarditis. Int J Biol Macromol 2011; 49:487-92. [PMID: 21664926 DOI: 10.1016/j.ijbiomac.2011.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/30/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
2A protease of the pathogenic coxsackievirus B3 is key to the pathogenesis of inflammatory myocarditis and, therefore, an attractive drug target. However lack of a crystal structure impedes design of inhibitors. Here we predict 3D structure of CVB3 2A(pro) based on sequence comparison and homology modeling with human rhinovirus 2A(pro). The two enzymes are remarkably similar in their core regions. However they have different conformations at the N-terminal. A large number of N-terminal hydrophobic residues reduce the thermal stability of CVB3 2A(pro), as we confirmed by fluorescence, western blot and turbidity measurement. Molecular dynamic simulation revealed that elevated temperature induces protein motion that results in frequent movement of the N-terminal coil. This may therefore induce successive active site changes and thus play an important role in destabilization of CVB3 2A(pro) structure.
Collapse
Affiliation(s)
- Amir Hossein Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Designing a Highly Efficient Chemical Chaperone System Using Chitosan-Coated Alginate. Protein J 2010; 29:343-9. [DOI: 10.1007/s10930-010-9258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Laslo AC, Ganea E, Obinger C. Refolding of hexameric porcine leucine aminopeptidase using a cationic detergent and dextrin-10 as artificial chaperones. J Biotechnol 2009; 140:162-8. [DOI: 10.1016/j.jbiotec.2009.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 10/15/2008] [Accepted: 01/29/2009] [Indexed: 11/29/2022]
|
6
|
Chaperone-like α-cyclodextrins assisted self-assembly of double hydrophilic block copolymers in aqueous medium. POLYMER 2009. [DOI: 10.1016/j.polymer.2008.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Shaw BF, Schneider GF, Bilgiçer B, Kaufman GK, Neveu JM, Lane WS, Whitelegge JP, Whitesides GM. Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation. Protein Sci 2008; 17:1446-55. [PMID: 18451358 DOI: 10.1110/ps.035154.108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper reports that the acetylation of lysine epsilon-NH3(+) groups of alpha-amylase--one of the most important hydrolytic enzymes used in industry--produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90 degrees C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the neutral surfactant TRITON X-100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)phenyl ether), but not by the cationic surfactant, dodecyltrimethylammonium bromide (DTAB). The increased resistance of acetylated alpha-amylase toward inactivation is attributed to the increased net negative charge of alpha-amylase that resulted from the acetylation of lysine ammonium groups (lysine epsilon-NH3(+) --> epsilon-NHCOCH3). Increases in the net negative charge of proteins can decrease the rate of unfolding by anionic surfactants, and can also decrease the rate of protein aggregation. The acetylation of lysine represents a simple, inexpensive method for stabilizing bacterial alpha-amylase against irreversible inactivation in the presence of the anionic and neutral surfactants that are commonly used in industrial applications.
Collapse
Affiliation(s)
- Bryan F Shaw
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Deocaris CC, Takano S, Priyandoko D, Kaul Z, Yaguchi T, Kraft DC, Yamasaki K, Kaul SC, Wadhwa R. Glycerol stimulates innate chaperoning, proteasomal and stress-resistance functions: implications for geronto-manipulation. Biogerontology 2008; 9:269-82. [DOI: 10.1007/s10522-008-9136-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 02/27/2008] [Indexed: 12/21/2022]
|
9
|
Yazdanparast R, Khodagholi F, Souri E. Alkaline phosphatase refolding assisted by sequential use of oppositely charged detergents: a new artificial chaperone system. Int J Biol Macromol 2008; 42:195-202. [PMID: 17980423 DOI: 10.1016/j.ijbiomac.2007.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/22/2007] [Accepted: 09/23/2007] [Indexed: 01/14/2023]
Abstract
A novel artificial chaperone system, based on combination of oppositely charged detergents, was elaborated to refold soluble alkaline phosphatase. Upon dilution of urea-denatured alkaline phosphatase to a nondenaturing urea concentration in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to gradually remove the detergent molecules. In that respect, we used detergents with variable charges and tail lengths to initiate and complete the refolding process. The results obtained from various analyses (fluorescence, UV, circular dichroism, surface tension, turbidity measurements and activity assays) indicated that the extent of refolding assistance was different due to detergents structure and also the length of hydrophobic portion of each detergent. These observed differences were attributed to the strong electrostatic interactions among the capturing and stripping detergents used in this investigation. Collectively it is expected that protein refolding process can be achieved easier, cheaper and more efficient, using the new technique reported here.
Collapse
Affiliation(s)
- Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, P.O. Box 13145-1384, University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
10
|
Khodagholi F, Eftekharzadeh B, Yazdanparast R. A New Artificial Chaperone for Protein Refolding: Sequential Use of Detergent and Alginate. Protein J 2007; 27:123-9. [DOI: 10.1007/s10930-007-9115-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Khodagholi F, Yazdanparast R. Cooperative effects of artificial chaperone and Mg2+ ions on alkaline phosphatase refolding. Biochem Eng J 2007. [DOI: 10.1016/j.bej.2007.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Khodagholi F, Eftekharzadeh B, Yazdanparast R. Comparative Evaluation of α-Amylase Refolding Through Two Different Artificial Chaperone Systems. Protein J 2007; 26:293-301. [PMID: 17516156 DOI: 10.1007/s10930-007-9071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Two different artificial chaperone systems were evaluated in this work using either detergents or CDs as the stripping agents. Upon dilution of urea-denatured alpha-amylase to a non-denaturing urea concentration in the presence of the capturing agent, complexes of the detergent and non-native protein molecules are formed and thereby the formation of protein aggregates is prevented. The so-called captured protein is unable to refold from the detergent-protein complex states unless a stripping agent is used to remove the detergent molecules. Our results by fluorescence, UV, turbidity measurement, circular dichroism, surface tension and activity assay indicated that the extent of refolding assistance was different due to different inter- and intra- molecular interactions in the two different systems. However, the high activity recovery in the presence of detergents, as the stripping agent, suggests that they can constitute suitable replacement for the more expensive and common stripping agent of cyclodextrins.
Collapse
Affiliation(s)
- Fariba Khodagholi
- Institute of Biochemistry and Biophysics, The University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
13
|
Kim SH, Zhou HM, Yan YB. Effects of hydroxypropyl cyclodextrins on the reactivation of SDS-denatured aminoacylase. Int J Biol Macromol 2007; 40:76-82. [PMID: 16828862 DOI: 10.1016/j.ijbiomac.2006.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 05/19/2006] [Accepted: 05/29/2006] [Indexed: 11/21/2022]
Abstract
Cyclodextrins are natural-occurring circular oligosaccharides with an internal hydrophobic cavity and external hydrophilic edges. Because cyclodextrins bind with protein aromatic residues, they can prevent protein aggregation, and their ability to bind with detergents enables them to act as stripping reagents to release proteins from protein-detergent complexes. In this research, we investigated the effects of three hydroxypropyl cyclodextrins (HPCDs) on the refolding of aminoacylase from SDS-denatured states. It was found that the three HPCDs could effectively assist aminoacylase reactivation though they have different abilities. HP-gamma-CD, which has the largest cavity among the three HPCDs, was the most efficient one. Spectroscopic results further indicated that the secondary structure recovery of aminoacylase could be completed with the help of low concentrations of HPCDs. However, the activity of the released protein could not fully recover even though high concentrations of HPCDs were used. The concentration-dependent effects of HPCDs also indicated that cyclodextrins could also act as folding assistants in addition to acting as stripping reagents during the refolding of detergent-denatured proteins.
Collapse
Affiliation(s)
- Sung-Hye Kim
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
14
|
Yazdanparast R, Esmaeili MA, Khodagholi F. Control of aggregation in protein refolding: Cooperative effects of artificial chaperone and cold temperature. Int J Biol Macromol 2007; 40:126-33. [PMID: 16875728 DOI: 10.1016/j.ijbiomac.2006.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 06/21/2006] [Accepted: 06/25/2006] [Indexed: 11/16/2022]
Abstract
Refolding of GuHCl-denatured recombinant-human growth hormone (r-hGH) was investigated in both dilution additive and artificial chaperone assisted modes. In both techniques, it was found that CTAB is a better additive (in dilution mode) or a capturing agent (in artificial chaperone method). Neither of the two techniques was capable of complete inhibition of aggregates formed during refolding process. In dilution, using CTAB or alpha-cyclodextrin (alpha-CD) as two different additives, the aggregation was inhibited by almost 55%. However, the extent of inhibition raised to almost 82% in artificial chaperone assisted mode using CTAB as the capturing and alpha-CD as the stripping agents. Maximum inhibition of aggregation (up to 97%) was obtained when the entire process of refolding was done at 4 degrees C. However, under this temperature program, the far-UV CD and intrinsic fluorescence spectra of the refolded samples were not superimposable on their respective native spectra. The spectra superimposibilities were obtained when the refolding process was achieved under a well worked out temperature program: incubation of the sample for 3 min at 4 degrees C after initiation of the stripping step followed by overnight incubation at 22 degrees C. Based on these data, it is expected that higher activity recovery yields of recombinant proteins, particularly at relatively higher protein concentrations, could be achieved by getting a better molecular understanding of major factors responsive for aggregation and refolding pathways.
Collapse
Affiliation(s)
- Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, The University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
15
|
Yazdanparast R, Khodagholi F. Kinetic aspects of alkaline phosphatase refolding in the presence of α-cyclodextrin. Arch Biochem Biophys 2006; 446:11-9. [PMID: 16386233 DOI: 10.1016/j.abb.2005.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 11/30/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
To get a better understanding of the molecular aspects of protein folding, the refolding kinetic behavior of guanidine hydrochloride-denatured alkaline phosphatase (ALP) was studied in the presence of alpha-cyclodextrin (alpha-CD) through two different approaches: the dilution additive and the artificial chaperone-assisted methods. It was found that alpha-CD enhanced the recovered activity more than 50% via both approaches while decreased the refolding rate, perhaps due to engaging the hydrophobic patches of the protein in a rigid conformation. In contrast, detergents used in the artificial chaperone method increased the refolding rate significantly. A comparison of the rate constants for the refolding and the activity recovery of denatured ALP in the presence of various concentrations of CD and different kinds of detergents showed that they do not progress in a synchronized pattern. This may be attributed to continuous structural rearrangements in the protein long after the return of enzyme activity. These observations are discussed in terms of kinetic and structural aspects of the refolding pathway.
Collapse
Affiliation(s)
- Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, The University of Tehran, P.O. Box 13145-1384, Tehran, Iran.
| | | |
Collapse
|