1
|
Moreno-Jiménez S, Lopez-Cantillo G, Arevalo-Romero JA, Perdomo-Arciniegas AM, Moreno-Gonzalez AM, Devia-Mejia B, Camacho BA, Gómez-Puertas P, Ramirez-Segura CA. An engineered miniACE2 protein secreted by mesenchymal stromal cells effectively neutralizes multiple SARS-CoV- 2 variants in vitro. Mol Med 2025; 31:151. [PMID: 40269697 PMCID: PMC12016477 DOI: 10.1186/s10020-025-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
SARS-CoV- 2 continues to evolve, producing novel Omicron subvariants through recombinant lineages that acquire new mutations, undermining existing antiviral strategies. The viral fitness and adaptive potential of SARS-CoV- 2 present significant challenges to emergency treatments, particularly monoclonal antibodies, which demonstrate reduced efficacy with the emergence of each new variant. Consequently, immunocompromised individuals, who are more susceptible to severe manifestations of COVID- 19 and face heightened risks of critical complications and mortality, remain vulnerable in the absence of effective emergency treatments. To develop translational approaches that can benefit this at-risk population and establish broader therapeutic strategies applicable across variants, we previously designed and engineered in silico miniACE2 decoys (designated BP2, BP9, and BP11). These decoys demonstrated promising efficacy in neutralizing Omicron subvariants. In this study, we leveraged the therapeutic potential of mesenchymal stromal cells (MSCs) for tissue repair and immunomodulation in lung injuries and used these cells as a platform for the secretion of BP2. Our innovative assays, which were conducted with the BP2 protein secreted into the culture supernatant of BP2-MSCs, demonstrated the potential for neutralizing SARS-CoV- 2, including Omicron subvariants. The development of these advanced therapeutic platforms holds significant promise for scalability to effectively mitigate the impact of severe COVID- 19, contributing to broader and more resilient treatment strategies against the evolving landscape of SARS-CoV- 2 variants.
Collapse
Affiliation(s)
- Sara Moreno-Jiménez
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia
| | - Gina Lopez-Cantillo
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia
| | - Jenny Andrea Arevalo-Romero
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia
- Research and Innovation Area, Laboratorio Nacional de Diagnostico Veterinario, Instituto Colombiano Agropecuario, 110221, Bogotá, Colombia
| | - Ana María Perdomo-Arciniegas
- Banco de Sangre de Cordón Umbilical, BSCU, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Andrea Marisol Moreno-Gonzalez
- Banco de Sangre de Cordón Umbilical, BSCU, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bellaneth Devia-Mejia
- Banco de Sangre de Cordón Umbilical, BSCU, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia
| | - Paulino Gómez-Puertas
- Grupo de Modelado Molecular del Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Cesar A Ramirez-Segura
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia.
| |
Collapse
|
2
|
Song L, Jiang W, Yu Y, Yu J, Zheng R. The mechanism of PLTP on sepsis-associated acute kidney injury: some hints. Crit Care 2025; 29:127. [PMID: 40114252 PMCID: PMC11924828 DOI: 10.1186/s13054-025-05333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/22/2025] [Indexed: 03/22/2025] Open
Affiliation(s)
- Lin Song
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Wei Jiang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yang Yu
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Jiangquan Yu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Ruiqiang Zheng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
3
|
Pirillo A, Svecla M, Catapano AL, Holleboom AG, Norata GD. Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res 2020; 117:1033-1045. [PMID: 32886765 DOI: 10.1093/cvr/cvaa252] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Protein glycosylation is a post-translational modification consisting in the enzymatic attachment of carbohydrate chains to specific residues of the protein sequence. Several types of glycosylation have been described, with N-glycosylation and O-glycosylation being the most common types impacting on crucial biological processes, such as protein synthesis, trafficking, localization, and function. Genetic defects in genes involved in protein glycosylation may result in altered production and activity of several proteins, with a broad range of clinical manifestations, including dyslipidaemia and atherosclerosis. A large number of apolipoproteins, lipoprotein receptors, and other proteins involved in lipoprotein metabolism are glycosylated, and alterations in their glycosylation profile are associated with changes in their expression and/or function. Rare genetic diseases and population genetics have provided additional information linking protein glycosylation to the regulation of lipoprotein metabolism.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| |
Collapse
|
4
|
Albers JJ, Day JR, Wolfbauer G, Kennedy H, Vuletic S, Cheung MC. Impact of site-specific N-glycosylation on cellular secretion, activity and specific activity of the plasma phospholipid transfer protein. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1814:908-11. [PMID: 21515415 PMCID: PMC3112057 DOI: 10.1016/j.bbapap.2011.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/01/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022]
Abstract
The plasma phospholipid transfer protein (PLTP) plays a key role in lipid and lipoprotein metabolism. It has six potential N-glycosylation sites. To study the impact of these sites on PLTP secretion and activity, six variants containing serine to alanine point mutations were prepared by site-directed mutagenesis and expressed in Chinese hamster ovary Flp-In cells. The apparent size of each of the six PLTP mutants was slightly less than that of wild type by Western blot, indicating that all six sites are glycosylated or utilized. The size of the carbohydrate at each N-glycosylation site ranged from 3.14 to 4.2kDa. The effect of site-specific N-glycosylation removal on PLTP secretion varied from a modest enhancement (15% and 60%), or essentially no effect, to a reduction in secretion (8%, 14% and 32%). Removal of N-glycosylation at any one of the six glycosylation sites resulted in a significant 35-78% decrease in PLTP activity, and a significant 29-80% decrease in PLTP specific activity compared to wild type. These data indicate that although no single N-linked carbohydrate chain is a requirement for secretion or activity, the removal of the carbohydrate chains had a quantitative impact on cellular secretion of PLTP and its phospholipid transfer activity.
Collapse
Affiliation(s)
- John J. Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Gertrud Wolfbauer
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hal Kennedy
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Marian C. Cheung
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Knezevic A, Gornik O, Polasek O, Pucic M, Redzic I, Novokmet M, Rudd PM, Wright AF, Campbell H, Rudan I, Lauc G. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 2010; 20:959-69. [PMID: 20356825 DOI: 10.1093/glycob/cwq051] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Protein glycosylation affects nearly all molecular interactions at the cell surface and in the intercellular space. Many of the physiological variations which are part of homeostatic mechanisms influence glycosylation. However, a comprehensive overview of changes in glycosylation caused by aging and common lifestyle parameters is still lacking. After analyzing N-glycans in the plasma of 1914 individuals from the Croatian islands of Vis and Korcula, we performed a comprehensive analysis of the dependence of different glycosylation features (position of fucose, level of galactosylation, sialylation and branching) on aging, smoking, body fat and plasma lipid status. A number of statistically significant associations were observed. Glycosylation changes with aging were especially evident in females, mostly in association with the transition from pre-menopausal to post-menopausal age. Levels of core-fucosylated, non-galactosylated, digalactosylated and disialylated biantennary glycans were shown to be mainly age dependent, but the level of branching and higher levels of galactosylation were found to correlate with lipid status. For the majority of glycans which we analyzed, all examined parameters explained up to 5% of the variance. The only notable exception were non-galactosylated glycans where 20% of the variance was explained mostly by age and blood pressure. In general, only a small fraction of the variability in glycan levels observed in a population was explained by age and other measured parameters, indicating that even in the absence of a genetic template, glycan levels are mostly determined by genetic background and/or specific pathophysiological processes.
Collapse
Affiliation(s)
- Ana Knezevic
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Ante Kovacića 1, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|