1
|
Homology Modeling and Analysis of Vacuolar Aspartyl Protease from a Novel Yeast Expression Host Meyerozyma guilliermondii Strain SO. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Akanuma S, Yamaguchi M, Yamagishi A. Comprehensive mutagenesis to identify amino acid residues contributing to the difference in thermostability between two originally thermostable ancestral proteins. PLoS One 2021; 16:e0258821. [PMID: 34673819 PMCID: PMC8530338 DOI: 10.1371/journal.pone.0258821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
Further improvement of the thermostability of inherently thermostable proteins is an attractive challenge because more thermostable proteins are industrially more useful and serve as better scaffolds for protein engineering. To establish guidelines that can be applied for the rational design of hyperthermostable proteins, we compared the amino acid sequences of two ancestral nucleoside diphosphate kinases, Arc1 and Bac1, reconstructed in our previous study. Although Bac1 is a thermostable protein whose unfolding temperature is around 100°C, Arc1 is much more thermostable with an unfolding temperature of 114°C. However, only 12 out of 139 amino acids are different between the two sequences. In this study, one or a combination of amino acid(s) in Bac1 was/were substituted by a residue(s) found in Arc1 at the same position(s). The best mutant, which contained three amino acid substitutions (S108D, G116A and L120P substitutions), showed an unfolding temperature more than 10°C higher than that of Bac1. Furthermore, a combination of the other nine amino acid substitutions also led to improved thermostability of Bac1, although the effects of individual substitutions were small. Therefore, not only the sum of the contributions of individual amino acids, but also the synergistic effects of multiple amino acids are deeply involved in the stability of a hyperthermostable protein. Such insights will be helpful for future rational design of hyperthermostable proteins.
Collapse
Affiliation(s)
- Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
- * E-mail:
| | - Minako Yamaguchi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
3
|
Dehnavi E, Fathi-Roudsari M, Mirzaie S, Arab SS, Ranaei Siadat SO, Khajeh K. Engineering disulfide bonds in Selenomonas ruminantium β-xylosidase by experimental and computational methods. Int J Biol Macromol 2016; 95:248-255. [PMID: 27818293 DOI: 10.1016/j.ijbiomac.2016.10.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/22/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
Homotetrameric β-xylosidase from Selenomonas ruminantium (SXA) is one of the most efficient enzymes known for the hydrolysis of cell wall hemicellulose. SXA shows a rapid rate of activity loss at temperatures above 50°C. In this study, we have introduced two inter-subunit disulfide bridges with one point mutation. Lys237 was chosen to be replaced with cysteine since it interacts with the same residue in the opposite subunit. While pH optimum, temperature profile and catalytic efficiency of the mutated variant were similar to the native enzyme, the mutated enzyme showed about 40% increase in thermal stability at 55°C. Our results showed that introduction of a single residue mutation in structure of SXA results in appearance of two disulfide bonds at dimer-dimer interface of the enzyme. Coarse-grained molecular dynamics (CG-MD) simulations also proved lower amounts of root mean square fluctuation (RMSF) for position 237 and potential energy for mutated SXA. Based these results, we suggest that choosing a correct residue for mutation in multi subunit proteins results in multiple site conversions which equals to several simultaneous mutations. Furthermore, CG-MD simulation in agreement with experimental methods showed higher thermostability of mutated SXA which proved applicability of this simulation for thermostability analysis.
Collapse
Affiliation(s)
- Ehsan Dehnavi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Engineering Laboratory, Protein Research Center (PRC), Shahid Beheshti University, GC, Tehran, Iran; Nanobiotechnology Engineering Laboratory, Faculty of Engineering and New Technologies, Shahid Beheshti University, GC, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers. Biotechnol Adv 2015; 33:1671-84. [DOI: 10.1016/j.biotechadv.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022]
|
5
|
Wang Q, Cen Z, Zhao J. The survival mechanisms of thermophiles at high temperatures: an angle of omics. Physiology (Bethesda) 2015; 30:97-106. [PMID: 25729055 DOI: 10.1152/physiol.00066.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are referred to as microorganisms with optimal growth temperatures of >60 °C. Over the past few years, a number of studies have been conducted regarding thermophiles, especially using the omics strategies. This review provides a systematic view of the survival physiology of thermophiles from an "omics" perspective, which suggests that the adaptive ability of thermophiles is based on a cooperative mode with multi-dimensional regulations integrating genomics, transcriptomics, and proteomics.
Collapse
Affiliation(s)
- Quanhui Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and BGI-Shenzhen, Shenzhen, China
| | - Zhen Cen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| | - Jingjing Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; and
| |
Collapse
|
6
|
Chen Z, Wen B, Wang Q, Tong W, Guo J, Bai X, Zhao J, Sun Y, Tang Q, Lin Z, Lin L, Liu S. Quantitative proteomics reveals the temperature-dependent proteins encoded by a series of cluster genes in thermoanaerobacter tengcongensis. Mol Cell Proteomics 2013; 12:2266-77. [PMID: 23665590 DOI: 10.1074/mcp.m112.025817] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Comprehensive and quantitative information of the thermophile proteome is an important source for understanding of the survival mechanism under high growth temperature. Thermoanaerobacter tengcongensis (T. tengcongensis), a typical anaerobic thermophilic eubacterium, was selected to quantitatively evaluate its protein abundance changes in response to four different temperatures. With optimized procedures of isobaric tags for relative and absolute quantitation quantitative proteomics (iTRAQ), such as peptide fractionation with high-pH reverse phase (RP) high performance liquid chromatography (HPLC), tandem MS acquisition mode in LTQ Orbitrap Velos MS, and evaluation of the quantification algorithms, high quality of the quantitative information of the peptides identified were acquired. In total, 1589 unique proteins were identified and defined 251 as the temperature-dependent proteins. Analysis of genomic locations toward the correspondent genes of these temperature-dependent proteins revealed that more than 30% were contiguous units with relevant biological functions, which are likely to form the operon structures in T. tengcongensis. The RNA sequencing (RNA-seq) data further demonstrated that these cluster genes were cotranscribed, and their mRNA abundance changes responding to temperature exhibited the similar trends as the proteomic results, suggesting that the temperature-dependent proteins are highly associated with the correspondent transcription status. Hence, the operon regulation is likely an energy-efficient mode for T. tengcongensis survival. In addition, evaluation to the functions of differential proteomes indicated that the abundance of the proteins participating in sulfur-respiration on the plasma membrane was decreased as the temperature increased, whereas the glycolysis-related protein abundance was increased. The energy supply in T. tengcongensis at high temperature is, therefore, speculated not mainly through the respiration chain reactions.
Collapse
Affiliation(s)
- Zhen Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China 101318
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jakoblinnert A, van den Wittenboer A, Shivange AV, Bocola M, Heffele L, Ansorge-Schumacher M, Schwaneberg U. Design of an activity and stability improved carbonyl reductase from Candida parapsilosis. J Biotechnol 2013; 165:52-62. [DOI: 10.1016/j.jbiotec.2013.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
|
8
|
Boissier F, Georgescauld F, Moynié L, Dupuy JW, Sarger C, Podar M, Lascu I, Giraud MF, Dautant A. An intersubunit disulfide bridge stabilizes the tetrameric nucleoside diphosphate kinase of Aquifex aeolicus. Proteins 2012; 80:1658-68. [DOI: 10.1002/prot.24062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/23/2012] [Accepted: 02/06/2012] [Indexed: 12/19/2022]
|
9
|
Narasimhan D, Collins GT, Nance MR, Nichols J, Edwald E, Chan J, Ko MC, Woods JH, Tesmer JJG, Sunahara RK. Subunit stabilization and polyethylene glycolation of cocaine esterase improves in vivo residence time. Mol Pharmacol 2011; 80:1056-65. [PMID: 21890748 PMCID: PMC3228533 DOI: 10.1124/mol.111.074997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/23/2011] [Indexed: 11/22/2022] Open
Abstract
No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37°C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37°C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.
Collapse
Affiliation(s)
- Diwahar Narasimhan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Adén J, Wallgren M, Storm P, Weise CF, Christiansen A, Schröder WP, Funk C, Wolf-Watz M. Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1880-90. [PMID: 21798375 DOI: 10.1016/j.bbapap.2011.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022]
Abstract
Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin-dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted the resolving cysteine, generating an intramolecular disulfide bond and release of a second water molecule. PrxQ is recycled to the active state by a thioredoxin-dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here, we have performed a detailed study of the activity, structure and dynamics of PrxQ in both the oxidized and reduced states. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Analysis of NMR spin relaxation rates shows that PrxQ is monomeric in both oxidized and reduced states. As evident from R(2) relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of this conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.
Collapse
Affiliation(s)
- Jörgen Adén
- Department of Chemistry, Umea University, Umea, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu Z, Lu D, Li J, Chen W, Liu Z. Strengthening intersubunit hydrogen bonds for enhanced stability of recombinant urate oxidase from Aspergillus flavus: molecular simulations and experimental validation. Phys Chem Chem Phys 2008; 11:333-40. [PMID: 19088989 DOI: 10.1039/b811496j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to obtain molecular insight into the deactivation of recombinant urate oxidase (uricase, UOX, EC 1.7.3.3) (rUOX) from Aspergillus flavus. The enzyme is a tunnel-shaped homotetramer and has important clinical applications. By means of molecular dynamics simulations, multidimensional structural characterization and enzyme activity assays, we concluded that the thermal deactivation of UOX at neutral pH was associated with the loss of intersubunit hydrogen (H) bonds. This mechanism could also explain the deactivation of dilute aqueous UOX. Thermal deactivation of aqueous UOX due to dissociation of its subunits was ruled out. Displacement of H(2)O from the surface of UOX by less polar solvents such as methanol and dimethyl sulfoxide (DMSO) was proposed as an approach for strengthening intersubunit H bonds and consequently UOX stability. The effectiveness of this method was validated by both in silico and in vitro experiments. The results mentioned above provide insights for improving the stability of UOX and extending its applications. They may also be helpful for understanding the properties of other multimeric proteins.
Collapse
Affiliation(s)
- Zhixia Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | | | | | | | | |
Collapse
|
12
|
Goihberg E, Dym O, Tel-Or S, Shimon L, Frolow F, Peretz M, Burstein Y. Thermal stabilization of the protozoan Entamoeba histolytica alcohol dehydrogenase by a single proline substitution. Proteins 2008; 72:711-9. [PMID: 18260103 DOI: 10.1002/prot.21946] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Analysis of the three-dimensional structures of two closely related thermophilic and hyperthermophilic alcohol dehydrogenases (ADHs) from the respective microorganisms Entamoeba histolytica (EhADH1) and Thermoanaerobacter brockii (TbADH) suggested that a unique, strategically located proline residue (Pro275) at the center of the dimerization interface might be crucial for maintaining the thermal stability of TbADH. To assess the contribution of Pro275 to the thermal stability of the ADHs, we applied site-directed mutagenesis to replace Asp275 of EhADH1 with Pro (D275P-EhADH1) and conversely Pro275 of TbADH with Asp (P275D-TbADH). The results indicate that replacing Asp275 with Pro significantly enhances the thermal stability of EhADH1 (DeltaT(1/2) <or= +10 degrees C), whereas the reverse mutation in the thermophilic TbADH (P275D-TbADH) reduces the thermostability of the enzyme (DeltaT(1/2) <or= -18.8 degrees C). Analysis of the crystal structures of the thermostabilized mutant D275P-EhADH1 and the thermocompromised mutant P275D-TbADH suggest that a proline residue at position 275 thermostabilized the enzymes by reducing flexibility and by reinforcing hydrophobic interactions at the dimer-dimer interface of the tetrameric ADHs.
Collapse
Affiliation(s)
- Edi Goihberg
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|