1
|
|
2
|
Ghasemzadeh S, Riazi GH. Inhibition of Tau amyloid fibril formation by folic acid: In-vitro and theoretical studies. Int J Biol Macromol 2020; 154:1505-1516. [DOI: 10.1016/j.ijbiomac.2019.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
3
|
Ramshini H, Moghaddasi AS, Mollania N, Khodarahmi R. Diverse antithetical effects of the bio-compatible Ag-NPs on the hen egg lysozyme amyloid aggregation: from an efficient inhibitor to obscure inducer. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1478-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Jangholi A, Ashrafi-Kooshk MR, Arab SS, Karima S, Poorebrahim M, Ghadami SA, Moosavi-Movahedi AA, Khodarahmi R. Can any “non-specific charge modification within microtubule binding domains of Tau” be a prerequisite of the protein amyloid aggregation? An in vitro study on the 1N4R isoform. Int J Biol Macromol 2018; 109:188-204. [DOI: 10.1016/j.ijbiomac.2017.12.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/26/2023]
|
5
|
Kiran Kumar E, Prasad DK, Prakash Prabhu N. Concentration dependent switch in the kinetic pathway of lysozyme fibrillation: Spectroscopic and microscopic analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:187-194. [PMID: 28448956 DOI: 10.1016/j.saa.2017.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/09/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Formation of amyloid fibrils is found to be a general tendency of many proteins. Investigating the kinetic mechanisms and structural features of the intermediates and the final fibrillar state is essential to understand their role in amyloid diseases. Lysozyme, a notable model protein for amyloidogenic studies, readily formed fibrils in vitro at neutral pH in the presence of urea. It, however, showed two different kinetic pathways under varying urea concentrations when probed with thioflavin T (ThT) fluorescence. In 2M urea, lysozyme followed a nucleation-dependent fibril formation pathway which was not altered by varying the protein concentration from 2mg/ml to 8mg/ml. In 4M urea, the protein exhibited concentration dependent change in the mechanism. At lower protein concentrations, lysozyme formed fibrils without any detectable nuclei (nucleation-independent polymerization pathway). When the concentration of the protein was increased above 3mg/ml, the protein followed nucleation-dependent polymerization pathway as observed in the case of 2M urea condition. This was further verified using microscopic images of the fibrils. The kinetic parameters such as lag time, elongation rate, and fibrillation half-time, which were derived from ThT fluorescence changes, showed linear dependency against the initial protein concentration suggested that under the nucleation-dependent pathway conditions, the protein followed primary-nucleation mechanism without any significant secondary nucleation events. The results also suggested that the differences in the initial protein conformation might alter the mechanism of fibrillation; however, at the higher protein concentrations lysozyme shifted to nucleation-dependent pathway.
Collapse
Affiliation(s)
- E Kiran Kumar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - Deepak Kumar Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
6
|
Jangholi A, Ashrafi-Kooshk MR, Arab SS, Riazi G, Mokhtari F, Poorebrahim M, Mahdiuni H, Kurganov BI, Moosavi-Movahedi AA, Khodarahmi R. Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: A comparative study. Arch Biochem Biophys 2016; 609:1-19. [DOI: 10.1016/j.abb.2016.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
|
7
|
Alcaráz MR, Schwaighofer A, Goicoechea H, Lendl B. EC-QCL mid-IR transmission spectroscopy for monitoring dynamic changes of protein secondary structure in aqueous solution on the example of β-aggregation in alcohol-denaturated α-chymotrypsin. Anal Bioanal Chem 2016; 408:3933-41. [PMID: 27007739 PMCID: PMC4873525 DOI: 10.1007/s00216-016-9464-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/22/2016] [Accepted: 03/02/2016] [Indexed: 11/24/2022]
Abstract
In this work, a novel EC-QCL-based setup for mid-IR transmission measurements in the amide I region is introduced for monitoring dynamic changes in secondary structure of proteins. For this purpose, α-chymotrypsin (aCT) acts as a model protein, which gradually forms intermolecular β-sheet aggregates after adopting a non-native α-helical structure induced by exposure to 50 % TFE. In order to showcase the versatility of the presented setup, the effects of varying pH values and protein concentration on the rate of β-aggregation were studied. The influence of the pH value on the initial reaction rate was studied in the range of pH 5.8-8.2. Results indicate an increased aggregation rate at elevated pH values. Furthermore, the widely accessible concentration range of the laser-based IR transmission setup was utilized to investigate β-aggregation across a concentration range of 5-60 mg mL(-1). For concentrations lower than 20 mg mL(-1), the aggregation rate appears to be independent of concentration. At higher values, the reaction rate increases linearly with protein concentration. Extended MCR-ALS was employed to obtain pure spectral and concentration profiles of the temporal transition between α-helices and intermolecular β-sheets. Comparison of the global solutions obtained by the modelled data with results acquired by the laser-based IR transmission setup at different conditions shows excellent agreement. This demonstrates the potential and versatility of the EC-QCL-based IR transmission setup to monitor dynamic changes of protein secondary structure in aqueous solution at varying conditions and across a wide concentration range. Graphical abstract EC-QCL IR spectroscopy for monitoring protein conformation change.
Collapse
Affiliation(s)
- Mirta R Alcaráz
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060, Vienna, Austria
- Laboratorio de Desarrollo Analítico y Quimiometría, FBCB, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060, Vienna, Austria
| | - Héctor Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría, FBCB, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060, Vienna, Austria.
| |
Collapse
|
8
|
Chaari A, Fahy C, Chevillot-Biraud A, Rholam M. Insights into Kinetics of Agitation-Induced Aggregation of Hen Lysozyme under Heat and Acidic Conditions from Various Spectroscopic Methods. PLoS One 2015; 10:e0142095. [PMID: 26571264 PMCID: PMC4646502 DOI: 10.1371/journal.pone.0142095] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/16/2015] [Indexed: 01/28/2023] Open
Abstract
Protein misfolding and amyloid formation are an underlying pathological hallmark in a number of prevalent diseases of protein aggregation ranging from Alzheimer’s and Parkinson’s diseases to systemic lysozyme amyloidosis. In this context, we have used complementary spectroscopic methods to undertake a systematic study of the self-assembly of hen egg-white lysozyme under agitation during a prolonged heating in acidic pH. The kinetics of lysozyme aggregation, monitored by Thioflavin T fluorescence, dynamic light scattering and the quenching of tryptophan fluorescence by acrylamide, is described by a sigmoid curve typical of a nucleation-dependent polymerization process. Nevertheless, we observe significant differences between the values deduced for the kinetic parameters (lag time and aggregation rate). The fibrillation process of lysozyme, as assessed by the attenuated total reflection-Fourier transform infrared spectroscopy, is accompanied by an increase in the β-sheet conformation at the expense of the α-helical conformation but the time-dependent variation of the content of these secondary structures does not evolve as a gradual transition. Moreover, the tryptophan fluorescence-monitored kinetics of lysozyme aggregation is described by three phases in which the temporal decrease of the tryptophan fluorescence quantum yield is of quasilinear nature. Finally, the generated lysozyme fibrils exhibit a typical amyloid morphology with various lengths (observed by atomic force microscopy) and contain exclusively the full-length protein (analyzed by highly performance liquid chromatography). Compared to the data obtained by other groups for the formation of lysozyme fibrils in acidic pH without agitation, this work provides new insights into the structural changes (local, secondary, oligomeric/fibrillar structures) undergone by the lysozyme during the agitation-induced formation of fibrils.
Collapse
Affiliation(s)
- Ali Chaari
- ITODYS, UMR CNRS 7086, Univ. Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
- Laboratoire de Génétique et Biologie Cellulaire, Université de Versailles Saint-Quentin-en-Yvelines, 78035, Versailles, France
| | - Christine Fahy
- ITODYS, UMR CNRS 7086, Univ. Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | | | - Mohamed Rholam
- ITODYS, UMR CNRS 7086, Univ. Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Khodarahmi R, Ashrafi-Kooshk MR, Khodarahmi S, Ghadami SA, Mostafaie A. Possible peroxidase active site environment in amyloidogenic proteins: Native monomer or misfolded-oligomer; which one is susceptible to the enzymatic activity, with contribution of heme? Int J Biol Macromol 2015; 80:293-301. [DOI: 10.1016/j.ijbiomac.2015.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
10
|
Non-fluorinated cosolvents: A potent amorphous aggregate inducer of metalloproteinase-conalbumin (ovotransferrin). Int J Biol Macromol 2015; 78:417-28. [DOI: 10.1016/j.ijbiomac.2015.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
|
11
|
Iram A, Alam T, Khan JM, Khan TA, Khan RH, Naeem A. Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products. PLoS One 2013; 8:e72075. [PMID: 23991043 PMCID: PMC3753358 DOI: 10.1371/journal.pone.0072075] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023] Open
Abstract
Conformational alterations of bovine hemoglobin (Hb) upon sequential addition of glyoxal over a range of 0–90% v/v were investigated. At 20% v/v glyoxal, molten globule (MG) state of Hb was observed by altered tryptophan fluorescence, high ANS binding, existence of intact heme, native-like secondary structure as depicted by far-UV circular dichroism (CD) and ATR-FTIR spectra as well as loss in tertiary structure as confirmed by near-UV CD spectra. In addition, size exclusion chromatography analysis depicted that MG state at 20% v/v glyoxal corresponded to expanded pre-dissociated dimers. Aggregates of Hb were detected at 70% v/v glyoxal. These aggregates of Hb had altered tryptophan environment, low ANS binding, exposed heme, increased β-sheet secondary structure, loss in tertiary structure, enhanced thioflavin T (ThT) fluorescence and red shifted Congo Red (CR) absorbance. On incubating Hb with 30% v/v glyoxal for 0–20 days, advanced glycation end products (AGEs) were detected on day 20. These AGEs were characterised by enhanced tryptophan fluorescence at 450 nm, exposure of heme, increase in intermolecular β-sheets, enhanced ThT fluorescence and red shift in CR absorbance. Comet assay revealed aggregates and AGEs to be genotoxic in nature. Scanning electron microscopy confirmed the amorphous structure of aggregates and branched fibrils of AGEs. The transformation of α-helix to β-sheet usually alters the normal protein to amyloidogenic resulting in a variety of protein conformational disorders such as diabetes, prion and Huntington's.
Collapse
Affiliation(s)
- Afshin Iram
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Tauqeer Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Javed M. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Taqi A. Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Rizwan H. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
- * E-mail:
| |
Collapse
|
12
|
Iram A, Naeem A. Detection and analysis of protofibrils and fibrils of hemoglobin: implications for the pathogenesis and cure of heme loss related maladies. Arch Biochem Biophys 2013; 533:69-78. [PMID: 23500139 DOI: 10.1016/j.abb.2013.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 01/17/2023]
Abstract
TFE induces structural alterations of proteins similar to the lipid environment of biological membranes, implicating these studies worthy of analyzing protein conformation in membranes such as red blood cells (RBCs). Heme loss occurs on rupturing of RBCs as found in diseases namely haemophilia, haemolytic anaemia, diabetes mellitus. TFE can be implied in discovering therapeutic targets, as it mimics the biological membrane environment. A global transition of hemoglobin (Hb) in presence of TFE was studied by using multi-methodological approach. The presence of partially folded state of Hb at 15% v/v TFE was confirmed by altered tryptophan environment, and retention of native-like secondary and tertiary structure. Molten globule state was observed at 20% v/v TFE as detected by increase tryptophan and high ANS fluorescence, slight alterations in Soret band relative to native. TFE on increasing concentration induced protofibrils at 25% v/v and fibrils at 45% v/v as depicted by altered tryptophan environment, heme loss, increase in non-native β-sheet secondary and tertiary structure, large hydrodynamic radii of heme-protein, high ANS, thioflavin T fluorescence and shift in Congo Red absorbance. Comet assay showed that protofibrils are cytotoxic to lymphocytes. SEM and XRD confirmed these aggregates to be fibrillar in nature.
Collapse
Affiliation(s)
- Afshin Iram
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
13
|
Ghadami SA, Hossein-pour Z, Khodarahmi R, Ghobadi S, Adibi H. Synthesis and in vitro characterization of some benzothiazole- and benzofuranone-derivatives for quantification of fibrillar aggregates and inhibition of amyloid-mediated peroxidase activity. Med Chem Res 2013; 22:115-126. [DOI: 10.1007/s00044-012-0012-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Khodarahmi R, Hossein-pour Z, Ghobadi S, Mansouri K, Mostafaie A, Yari K, Ghadami SA. Non-specific peroxidase activity and catalase-inhibitory behavior of fibrillar aggregates after interaction with heme: relevance to the etiology of amyloid-related neurodegenerative disorders using the experimental-based evidences. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0111-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Priya MH, Merchant S, Asthagiri D, Paulaitis ME. Quasi-Chemical Theory of Cosolvent Hydrophobic Preferential Interactions. J Phys Chem B 2012; 116:6506-13. [DOI: 10.1021/jp301629j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Hamsa Priya
- William G. Lowrie Department
of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Safir Merchant
- Department of Chemical and Biomolecular
Engineering, Johns Hopkins University,
Baltimore, Maryland 21218, United States
| | - Dilip Asthagiri
- Department of Chemical and Biomolecular
Engineering, Johns Hopkins University,
Baltimore, Maryland 21218, United States
| | - Michael E. Paulaitis
- William G. Lowrie Department
of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Amyloid fibril formation by native and modified bovine β-lactoglobulins proceeds through unfolded form of proteins: A comparative study. Biophys Chem 2011; 159:311-20. [DOI: 10.1016/j.bpc.2011.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 11/16/2022]
|
17
|
Heme, as a chaperone, binds to amyloid fibrils and forms peroxidase in vitro: Possible evidence on critical role of non-specific peroxidase activity in neurodegenerative disease onset/progression using the α-crystallin-based experimental system. Arch Biochem Biophys 2010; 494:205-15. [DOI: 10.1016/j.abb.2009.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 11/23/2022]
|