1
|
Trakarnpaiboon S, Bunterngsook B, Lekakarn H, Prongjit D, Champreda V. Characterization of cold-active trehalose synthase from Pseudarthrobacter sp. for trehalose bioproduction. BIORESOUR BIOPROCESS 2023; 10:65. [PMID: 38647947 PMCID: PMC10992939 DOI: 10.1186/s40643-023-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/29/2023] [Indexed: 04/25/2024] Open
Abstract
Trehalose is a functional sugar that has numerous applications in food, cosmetic, and pharmaceutical products. Production of trehalose from maltose via a single-step enzymatic catalysis using trehalose synthase (TreS) is a promising method compared with the conventional two-step process due to its simplicity with lower formation of byproducts. In this study, a cold-active trehalose synthase (PaTreS) from Pseudarthrobacter sp. TBRC 2005 was heterologously expressed and characterized. PaTreS showed the maximum activity at 20 °C and maintained 87% and 59% of its activity at 10 °C and 4 °C, respectively. The enzyme had remarkable stability over a board pH range of 7.0-9.0 with the highest activity at pH 7.0. The activity was enhanced by divalent metal ions (Mg2+, Mn2+ and Ca2+). Conversion of high-concentration maltose syrup (100-300 g/L) using PaTreS yielded 71.7-225.5 g/L trehalose, with 4.5-16.4 g/L glucose as a byproduct within 16 h. The work demonstrated the potential of PaTreS as a promising biocatalyst for the development of low-temperature trehalose production, with the advantages of reduced risk of microbial contamination with low generation of byproduct.
Collapse
Affiliation(s)
- Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand
| | - Daran Prongjit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueang, Khlong Luang, Pathumthani, 12120, Thailand.
| |
Collapse
|
2
|
Trakarnpaiboon S, Champreda V. Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct. J Microbiol Biotechnol 2022; 32:1054-1063. [PMID: 35791071 PMCID: PMC9628947 DOI: 10.4014/jmb.2202.02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35°C and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.
Collapse
Affiliation(s)
- Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Rd., Klong Luang District, Pathumthani 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Rd., Klong Luang District, Pathumthani 12120, Thailand,Corresponding author Phone: +66-2564-6700 Fax: +66-2564-6707 E-mail:
| |
Collapse
|
3
|
Abstract
A novel putative trehalose synthase gene (treM) was identified from an extreme temperature thermal spring. The gene was expressed in Escherichia coli followed by purification of the protein (TreM). TreM exhibited the pH optima of 7.0 for trehalose and trehalulose production, although it was functional and stable in the pH range of 5.0 to 8.0. Temperature activity profiling revealed that TreM can catalyze trehalose biosynthesis in a wide range of temperatures, from 5°C to 80°C. The optimum activity for trehalose and trehalulose biosynthesis was observed at 45°C and 50°C, respectively. A catalytic reaction performed at the low temperature of 5°C yielded trehalose with significantly reduced by-product (glucose) production in the reaction. TreM displayed remarkable thermal stability at optimum temperatures, with only about 20% loss in the activity after heat (50°C) exposure for 24 h. The maximum bioconversion yield of 74% trehalose (at 5°C) and 90% trehalulose (at 50°C) was obtained from 100 mM maltose and 70 mM sucrose, respectively. TreM was demonstrated to catalyze trehalulose biosynthesis utilizing the low-cost feedstock jaggery, cane molasses, muscovado, and table sugar. IMPORTANCE Trehalose is a rare sugar of high importance in biological research, with its property to stabilize cell membrane and proteins and protect the organism from drought. It is instrumental in the cryopreservation of human cells, e.g., sperm and blood stem cells. It is also very useful in the food industry, especially in the preparation of frozen food products. Trehalose synthase is a glycosyl hydrolase 13 (GH13) family enzyme that has been reported from about 22 bacterial species so far. Of these enzymes, to date, only two have been demonstrated to catalyze the biosynthesis of both trehalose and trehalulose. We have investigated the metagenomic data of an extreme temperature thermal spring to discover a novel gene that encodes a trehalose synthase (TreM) with higher stability and dual transglycosylation activities of trehalose and trehalulose biosynthesis. This enzyme is capable of catalyzing the transformation of maltose to trehalose and sucrose to trehalulose in a wide pH and temperature range. The present investigation endorses the thermal aquatic habitat as a promising genetic resource for the biocatalysts with high potential in producing high-value rare sugars.
Collapse
|
4
|
Trakarnpaiboon S, Bunterngsook B, Wansuksriand R, Champreda V. Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production. J Microbiol Biotechnol 2021; 31:1455-1464. [PMID: 34409951 PMCID: PMC9705850 DOI: 10.4014/jmb.2106.06032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40°C, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.
Collapse
Affiliation(s)
- Srisakul Trakarnpaiboon
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin RD., Klong Luang District, Pathumthani 12120, Thailand
| | - Benjarat Bunterngsook
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin RD., Klong Luang District, Pathumthani 12120, Thailand
| | - Rungtiva Wansuksriand
- Cassava and Starch Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Bangkok 10900, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin RD., Klong Luang District, Pathumthani 12120, Thailand,Corresponding author Phone: +66 2564 6700 x 3446 Fax: +66 2564 6707 E-mail:
| |
Collapse
|
5
|
Chen Y, Zhao Y, Zhou X, Liu N, Ming D, Zhu L, Jiang L. Improving the thermostability of trehalose synthase from Thermomonospora curvata by covalent cyclization using peptide tags and investigation of the underlying molecular mechanism. Int J Biol Macromol 2020; 168:13-21. [PMID: 33285196 DOI: 10.1016/j.ijbiomac.2020.11.195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
One of the most desirable properties for industrial enzymes is high thermotolerance, which can reduce the amount of biocatalyst used and lower the production cost. Aiming to improve the thermotolerance of trehalose synthase (TreS, EC 5.4.99.16) from Thermomonospora curvata, four mutants (G78D, V289L, G322A, I323L) and four cyclized TreS variants fused using different Tag/Catcher pairs (SpyTag-TreS-SpyCatcher, SpyTag-TreS-KTag, SnoopTag-TreS-SnoopCatcher, SnoopTagJR-TreS-DogTag) were constructed. The results showed that cyclization led to a much larger increase of thermostability than that achieved via site-directed mutagenesis. The t1/2 of all four cyclized TreS variants at 55 °C increased 2- to 3- fold, while the analysis of kinetic and thermodynamic stability indicated that the T50 of the different cyclized TreS variants increased by between 7.5 °C and 15.5 °C. Molecular dynamics simulations showed that the Rg values of cyclized TreS decreased significantly, indicating that the protein maintained a tight tertiary structure at high temperatures, avoiding exposure of the hydrophobic core to the solvent. Cyclization using a Tag/Catcher pair is a simple and effective method for improving the thermotolerance of enzymes.
Collapse
Affiliation(s)
- Yao Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang Zhao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xue Zhou
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Nian Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
6
|
Liu H, Liu H, Yang S, Wang R, Wang T. Improved Expression and Optimization of Trehalose Synthase by Regulation of P glv in Bacillus subtilis. Sci Rep 2019; 9:6585. [PMID: 31036837 PMCID: PMC6488592 DOI: 10.1038/s41598-019-43172-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Trehalose synthase (TreS) converts maltose to trehalose, which has several important functions; therefore, enhancing TreS expression is desirable. Here, a recombinant Bacillus subtilis W800N (ΔamyE)-Pglv strain was constructed to achieve enhanced expression of TreS. Process optimization strategies were developed to improve the expression level of TreS in B. subtilis W800N (ΔamyE)-Pglv. Intracellular activity of TreS was induced using 60 g/L of maltose in shake flask culture. The protein activity reached 5211 ± 134 U/g at 33 °C and pH 7.0 in Luria-Bertani medium. A fed-batch fermentation strategy was applied in a 30 L fermenter containing 18 L terrific broth to achieve high cell density by replacing glycerol with high maltose syrup as a carbon source and an inducer. After 32 h of fermentation, recombinant B. subtilis W800N (ΔamyE)-Pglv activity reached 6850 ± 287 U/g dry cell weight. Our results demonstrate the efficiency of the Pglv promoter in increasing the expression of TreS in B. subtilis W800N (ΔamyE)-Pglv.
Collapse
Affiliation(s)
- Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, 300457, China
| | - Hao Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin, 300457, China
| | - Shaojie Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China.,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology(Shandong Academy of Sciences), Jinan, Shandong, 250353, China. .,Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|
7
|
Cai X, Seitl I, Mu W, Zhang T, Stressler T, Fischer L, Jiang B. Characterization of a Recombinant Trehalose Synthase from Arthrobacter chlorophenolicus and its Unique Kinetics Indicating a Substrate Cooperativity. Appl Biochem Biotechnol 2018; 187:1255-1271. [DOI: 10.1007/s12010-018-2877-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023]
|
8
|
Biotechnical production of trehalose through the trehalose synthase pathway: current status and future prospects. Appl Microbiol Biotechnol 2018; 102:2965-2976. [PMID: 29460000 DOI: 10.1007/s00253-018-8814-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023]
Abstract
Trehalose (α-D-glucopyranosyl-(1 → 1)-α-D-glucopyranoside) is a non-reducing disaccharide composed of two glucose molecules linked by an α,α-1,1-glycosidic bond. It possesses physicochemical properties, which account for its biological roles in a variety of prokaryotic and eukaryotic organisms and invertebrates. Intensive studies of trehalose gradually uncovered its functions, and its applications in foods, cosmetics, and pharmaceuticals have increased every year. Currently, trehalose is industrially produced by the two-enzyme method, which was first developed in 1995 using maltooligosyltrehalose synthase (EC 5.4.99.15) and subsequently using maltooligosyltrehalose trehalohydrolase (EC 3.2.1.141), with starch as the substrate. This biotechnical method has lowered the price of trehalose and expanded its applications. However, when trehalose synthase (EC 5.4.99.16) was later discovered, this method for trehalose production using maltose as the substrate soon became a popular topic because of its simplicity and potential in industrial production. Since then, many trehalose synthases have been studied. This review summarizes the sources and characteristics of reported trehalose synthases, and the most recent advances on structural analysis of trehalose synthase, catalytic mechanism, molecular modification, and usage in industrial production processes.
Collapse
|
9
|
Su L, Jiang Q, Yu L, Wu J. Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C. Microb Cell Fact 2017; 16:24. [PMID: 28178978 PMCID: PMC5299778 DOI: 10.1186/s12934-017-0639-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our laboratory has reported a strategy for improving the extracellular production of recombinant proteins through co-expression with Thermobifida fusca cutinase, which increases membrane permeability via its phospholipid hydrolysis activity. However, the foam generated by the lysophospholipid product makes the fermentation process difficult to control in a fermentor. Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce sn1,2-diacylglycerides and organic phosphate, which do not induce foam formation. Therefore, co-expression with Bacillus cereus PLC was investigated as a method to improve the extracellular production of recombinant proteins. RESULTS When B. cereus PLC was expressed in Escherichia coli without its signal peptide, 95.3% of the total PLC activity was detected in the culture supernatant. PLC expression enhanced membrane permeability without obvious cell lysis. Then, six test enzymes, three secretory and three cytosolic, were co-expressed with B. cereus PLC. The enhancement of extracellular production correlated strongly with the molecular mass of the test enzyme. Extracellular production of Streptomyces sp. FA1 xylanase (43 kDa), which had the lowest molecular mass among the secretory enzymes, was 4.0-fold that of its individual expression control. Extracellular production of glutamate decarboxylase (51 kDa), which had the lowest molecular mass among the cytosolic enzymes, reached 26.7 U/mL; 88.3% of the total activity produced. This strategy was effectively scaled up using a 3-L fermentor. No obvious foam was generated during this fermentation process. CONCLUSIONS This is the first study to detail the enhanced extracellular production of recombinant proteins through co-expression with PLC. This new strategy, which is especially appropriate for lower molecular mass proteins, allows large-scale protein production in an easily controlled fermentation process.
Collapse
Affiliation(s)
- Lingqia Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Qi Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Lingang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|