1
|
Zhou P, Wen L, Lin J, Mei L, Liu Q, Shang S, Li J, Shu J. Integrated unsupervised-supervised modeling and prediction of protein-peptide affinities at structural level. Brief Bioinform 2022; 23:6555404. [PMID: 35352094 DOI: 10.1093/bib/bbac097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Cell signal networks are orchestrated directly or indirectly by various peptide-mediated protein-protein interactions, which are normally weak and transient and thus ideal for biological regulation and medicinal intervention. Here, we develop a general-purpose method for modeling and predicting the binding affinities of protein-peptide interactions (PpIs) at the structural level. The method is a hybrid strategy that employs an unsupervised approach to derive a layered PpI atom-residue interaction (ulPpI[a-r]) potential between different protein atom types and peptide residue types from thousands of solved PpI complex structures and then statistically correlates the potential descriptors with experimental affinities (KD values) over hundreds of known PpI samples in a supervised manner to create an integrated unsupervised-supervised PpI affinity (usPpIA) predictor. Although both the ulPpI[a-r] potential and usPpIA predictor can be used to calculate PpI affinities from their complex structures, the latter seems to perform much better than the former, suggesting that the unsupervised potential can be improved substantially with a further correction by supervised statistical learning. We examine the robustness and fault-tolerance of usPpIA predictor when applied to treat the coarse-grained PpI complex structures modeled computationally by sophisticated peptide docking and dynamics simulation. It is revealed that, despite developed solely based on solved structures, the integrated unsupervised-supervised method is also applicable for locally docked structures to reach a quantitative prediction but can only give a qualitative prediction on globally docked structures. The dynamics refinement seems not to change (or improve) the predictive results essentially, although it is computationally expensive and time-consuming relative to peptide docking. We also perform extrapolation of usPpIA predictor to the indirect affinity quantities of HLA-A*0201 binding epitope peptides and NHERF PDZ binding scaffold peptides, consequently resulting in a good and moderate correlation of the predicted KD with experimental IC50 and BLU on the two peptide sets, with Pearson's correlation coefficients Rp = 0.635 and 0.406, respectively.
Collapse
Affiliation(s)
- Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Li Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Jing Lin
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Li Mei
- Institute of Culinary, Sichuan Tourism University, Chengdu 610100, China
| | - Qian Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Shuyong Shang
- of Ecological Environment Protection, Chengdu Normal University, Chengdu 611130, China
| | - Juelin Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Jianping Shu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| |
Collapse
|
2
|
Ni Z, Wang A, Kang L, Zhang T. QSSR Modeling of Bacillus Subtilis Lipase A Peptide Collision Cross-Sections in Ion Mobility Spectrometry: Local Descriptor Versus Global Descriptor. Protein J 2021; 40:54-62. [PMID: 33454893 DOI: 10.1007/s10930-020-09960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 11/28/2022]
Abstract
To investigate the structure-dependent peptide mobility behavior in ion mobility spectrometry (IMS), quantitative structure-spectrum relationship (QSSR) is systematically modeled and predicted for the collision cross section Ω values of totally 162 single-protonated tripeptide fragments extracted from the Bacillus subtilis lipase A. Two different types of structure characterization methods, namely, local and global descriptor as well as three machine learning methods, namely, partial least squares (PLS), support vector machine (SVM) and Gaussian process (GP), are employed to parameterize and correlate the structures and Ω values of these peptide samples. In this procedure, the local descriptor is derived from the principal component analysis (PCA) of 516 physicochemical properties for 20 standard amino acids, which can be used to sequentially characterize the three amino acid residues composing a tripeptide. The global descriptor is calculated using CODESSA method, which can generate > 200 statistically significant variables to characterize the whole molecular structure of a tripeptide. The obtained QSSR models are evaluated rigorously via tenfold cross-validation and Monte Carlo cross-validation (MCCV). A comprehensive comparison is performed on the resulting statistics arising from the systematic combination of different descriptor types and machine learning methods. It is revealed that the local descriptor-based QSSR models have a better fitting ability and predictive power, but worse interpretability, than those based on the global descriptor. In addition, since the QSSR modeling using local descriptor does not consider the three-dimensional conformation of tripeptide samples, the method would be largely efficient as compared to the global descriptor.
Collapse
Affiliation(s)
- Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| | - Anlin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Lingyu Kang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Tiancheng Zhang
- Key Lab of Reproduction Regulation of NPFPC-Shanghai Institute of Planned Parenthood Research (SIPPR), Fudan University Reproduction and Development Institution, Shanghai, China
| |
Collapse
|
3
|
Cardoso-Silva J, Papageorgiou LG, Tsoka S. Network-based piecewise linear regression for QSAR modelling. J Comput Aided Mol Des 2019; 33:831-844. [PMID: 31628660 PMCID: PMC6825651 DOI: 10.1007/s10822-019-00228-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023]
Abstract
Quantitative Structure-Activity Relationship (QSAR) models are critical in various areas of drug discovery, for example in lead optimisation and virtual screening. Recently, the need for models that are not only predictive but also interpretable has been highlighted. In this paper, a new methodology is proposed to build interpretable QSAR models by combining elements of network analysis and piecewise linear regression. The algorithm presented, modSAR, splits data using a two-step procedure. First, compounds associated with a common target are represented as a network in terms of their structural similarity, revealing modules of similar chemical properties. Second, each module is subdivided into subsets (regions), each of which is modelled by an independent linear equation. Comparative analysis of QSAR models across five data sets of protein inhibitors obtained from ChEMBL is reported and it is shown that modSAR offers similar predictive accuracy to popular algorithms, such as Random Forest and Support Vector Machine. Moreover, we show that models built by modSAR are interpretatable, capable of evaluating the applicability domain of the compounds and serve well tasks such as virtual screening and the development of new drug leads.
Collapse
Affiliation(s)
- Jonathan Cardoso-Silva
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, 30 Aldwych, London, WC2B 4BG, UK
| | - Lazaros G Papageorgiou
- Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Bush House, 30 Aldwych, London, WC2B 4BG, UK.
| |
Collapse
|
4
|
Li Z, Miao Q, Yan F, Meng Y, Zhou P. Machine Learning in Quantitative Protein–peptide Affinity Prediction: Implications for Therapeutic Peptide Design. Curr Drug Metab 2019; 20:170-176. [DOI: 10.2174/1389200219666181012151944] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/07/2017] [Accepted: 08/20/2018] [Indexed: 01/03/2023]
Abstract
Background:Protein–peptide recognition plays an essential role in the orchestration and regulation of cell signaling networks, which is estimated to be responsible for up to 40% of biological interaction events in the human interactome and has recently been recognized as a new and attractive druggable target for drug development and disease intervention.Methods:We present a systematic review on the application of machine learning techniques in the quantitative modeling and prediction of protein–peptide binding affinity, particularly focusing on its implications for therapeutic peptide design. We also briefly introduce the physical quantities used to characterize protein–peptide affinity and attempt to extend the content of generalized machine learning methods.Results:Existing issues and future perspective on the statistical modeling and regression prediction of protein– peptide binding affinity are discussed.Conclusion:There is still a long way to go before establishment of general, reliable and efficient machine leaningbased protein–peptide affinity predictors.
Collapse
Affiliation(s)
- Zhongyan Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Qingqing Miao
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Fugang Yan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yang Meng
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Peng Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
5
|
Cardoso‐Silva J, Papadatos G, Papageorgiou LG, Tsoka S. Optimal Piecewise Linear Regression Algorithm for QSAR Modelling. Mol Inform 2018; 38:e1800028. [DOI: 10.1002/minf.201800028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jonathan Cardoso‐Silva
- Department of Informatics, Faculty of Natural and Mathematical SciencesKing's College London, Bush House London WC2B 4BG UK
| | - George Papadatos
- European Molecular Biology Laboratory – European Bioinformatics InstituteWellcome Trust Genome Campus Hinxton, Cambridge CB10 1SD UK
- GlaxoSmithKline Gunnels Wood Road Stevenage, Hertfordshire SG1 2NY UK
| | - Lazaros G. Papageorgiou
- Centre for Process Systems Engineering, Department of Chemical EngineeringUniversity College London Torrington Place London WC1E 7JE UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical SciencesKing's College London, Bush House London WC2B 4BG UK
| |
Collapse
|
6
|
Rational Design of the Minimal Requirement for Helix–Helix Peptide Interactions in the Trimer-of-Hairpins Motif of Pediatric Pneumonia RSV Fusion Glycoprotein. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9756-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Affiliation(s)
- Toshio Fujita
- Professor Emeritus at Kyoto University, 38-1 Iwakura-Miyakecho, Kyoto, Japan 606-0022
| | - David A. Winkler
- CSIRO Manufacturing, Bag 10, Clayton South MDC 3169, Australia
- Monash Institute of Pharmaceutical Sciences, 392 Royal Parade, Parkville 3052, Australia
- Latrobe
Institute for Molecular Science, Latrobe University, Bundoora 3086, Australia
- School
of Chemical and Physical Sciences, Flinders University, Bedford Park 5042, Australia
| |
Collapse
|
8
|
Zhan C, Li S, Zhong Q, Zhou D. Structure-Based Grafting, Mutation, and Optimization of Peptide Inhibitors to Fit in the Active Pocket of Human Secreted Phospholipase A2: Find New Use of Old Peptide Agents with Anti-Inflammatory Activity. Chem Biol Drug Des 2014; 85:418-26. [PMID: 25187416 DOI: 10.1111/cbdd.12424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/02/2014] [Accepted: 08/26/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chengye Zhan
- Department of ICU; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Shusheng Li
- Department of ICU; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Qiang Zhong
- Department of ICU; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Daixing Zhou
- Department of ICU; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| |
Collapse
|
9
|
Veselovsky AV, Zharkova MS, Poroikov VV, Nicklaus MC. Computer-aided design and discovery of protein-protein interaction inhibitors as agents for anti-HIV therapy. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:457-471. [PMID: 24716798 DOI: 10.1080/1062936x.2014.898689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Protein-protein interactions (PPI) are involved in most of the essential processes that occur in organisms. In recent years, PPI have become the object of increasing attention in drug discovery, particularly for anti-HIV drugs. Although the use of combinations of existing drugs, termed highly active antiretroviral therapy (HAART), has revolutionized the treatment of HIV/AIDS, problems with these agents, such as the rapid emergence of drug-resistant HIV-1 mutants and serious adverse effects, have highlighted the need for further discovery of new drugs and new targets. Numerous investigations have shown that PPI play a key role in the virus's life cycle and that blocking or modulating them has a significant therapeutic potential. Here we summarize the recent progress in computer-aided design of PPI inhibitors, mainly focusing on the selection of the drug targets (HIV enzymes and virus entry machinery) and the utilization of peptides and small molecules to prevent a variety of protein-protein interactions (viral-viral or viral-host) that play a vital role in the progression of HIV infection.
Collapse
Affiliation(s)
- A V Veselovsky
- a Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences , Moscow , Russia
| | | | | | | |
Collapse
|