1
|
Hati S, Bhattacharyya S. Writing a literature review as a class project in an upper-level undergraduate biochemistry course. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 52:311-316. [PMID: 38193602 DOI: 10.1002/bmb.21814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
A literature review is an important part of conducting academic research. Knowing how to conduct a literature search and write a high-quality literature review is a valuable skill. Herein, the authors describe the method of introducing a literature review writing exercise in an upper-level biochemistry course. Since 2020, authors have collaborated with numerous undergraduates writing literature reviews on topics in biochemistry that resulted in peer-reviewed publications. Authors believe that this unique idea of providing a course-based undergraduate research experience (CURE) to many undergraduates, especially those who otherwise do not receive collaborative research experience through traditional research paths, must be shared with other instructors.
Collapse
Affiliation(s)
- Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| |
Collapse
|
2
|
Gan Z, Zhang X, Li M, Li X, Zhang X, Wang C, Xiao Y, Liu J, Fang Z. Seryl-tRNA Synthetase Shows a Noncanonical Activity of Upregulating Laccase Transcription in Trametes hirsuta AH28-2 Exposed to Copper Ion. Microbiol Spectr 2023; 11:e0076823. [PMID: 37395668 PMCID: PMC10433817 DOI: 10.1128/spectrum.00768-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
The function of Seryl-tRNA synthetase in fungi during gene transcription regulation beyond translation has not been reported. Here, we report a seryl-tRNA synthetase, ThserRS, which can negatively regulate laccase lacA transcription in Trametes hirsuta AH28-2 under exposure to copper ion. ThserRS was obtained through yeast one-hybrid screening using a bait sequence of lacA promoter (-502 to -372 bp). ThserRS decreased while lacA increased at the transcription level in T. hirsuta AH28-2 in the first 36 h upon CuSO4 induction. Then, ThserRS was upregulated, and lacA was downregulated. ThserRS overexpression in T. hirsuta AH28-2 resulted in a decrement in lacA transcription and LacA activity. By comparison, ThserRS silencing led to increased LacA transcripts and activity. A minimum of a 32-bp DNA fragment containing two putative xenobiotic response elements could interact with ThserRS, with a dissociation constant of 919.9 nM. ThserRS localized in the cell cytoplasm and nucleus in T. hirsuta AH28-2 and was heterologously expressed in yeast. ThserRS overexpression also enhanced mycelial growth and oxidative stress resistance. The transcriptional level of several intracellular antioxidative enzymes in T. hirsuta AH28-2 was upregulated. Our results demonstrate a noncanonical activity of SerRS that acts as a transcriptional regulation factor to upregulate laccase expression at an early stage after exposure to copper ions. IMPORTANCE Seryl-tRNA synthetase is well known for the attachment of serine to the corresponding cognate tRNA during protein translation. In contrast, its functions beyond translation in microorganisms are underexplored. We performed in vitro and cell experiments to show that the seryl-tRNA synthetase in fungi with no UNE-S domain at the carboxyl terminus can enter the nucleus, directly interact with the promoter of the laccase gene, and negatively regulate the fungal laccase transcription early upon copper ion induction. Our study deepens our understanding of the Seryl-tRNA synthetase noncanonical activities in microorganisms. It also demonstrates a new transcription factor for fungal laccase transcription.
Collapse
Affiliation(s)
- Zhiwei Gan
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xueping Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Mengke Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xing Li
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Xinlei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Chenkai Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui, China
| |
Collapse
|
3
|
Dutta S, Chandra A. Free Energy Landscape of the Adenylation Reaction of the Aminoacylation Process at the Active Site of Aspartyl tRNA Synthetase. J Phys Chem B 2022; 126:5821-5831. [PMID: 35895864 DOI: 10.1021/acs.jpcb.2c03843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The process of protein biosynthesis is initiated by the aminoacylation process where a transfer ribonucleic acid (tRNA) is charged by the attachment of its cognate amino acid at the active site of the corresponding aminoacyl tRNA synthetase enzyme. The first step of the aminoacylation process, known as the adenylation reaction, involves activation of the cognate amino acid where it reacts with a molecule of adenosine triphosphate (ATP) at the active site of the enzyme to form the aminoacyl adenylate and inorganic pyrophosphate. In the current work, we have investigated the adenylation reaction between aspartic acid and ATP at the active site of the fully solvated aspartyl tRNA synthetase (AspRS) from Escherichia coli in aqueous medium at room temperature through hybrid quantum mechanical/molecular mechanical (QM/MM) simulations combined with enhanced sampling methods of well-tempered and well-sliced metadynamics. The objective of the present work is to study the associated free energy landscape and reaction barrier and also to explore the effects of active site mutation on the free energy surface of the reaction. The current calculations include finite temperature effects on free energy profiles. In particular, apart from contributions of interaction energies, the current calculations also include contributions of conformational, vibrational, and translational entropy of active site residues, substrates, and also the rest of the solvated protein and surrounding water into the free energy calculations. The present QM/MM metadynamics simulations predict a free energy barrier of 23.35 and 23.5 kcal/mol for two different metadynamics methods used to perform the reaction at the active site of the wild type enzyme. The free energy barrier increases to 30.6 kcal/mol when Arg217, which is an important conserved residue of the wild type enzyme at its active site, is mutated by alanine. These free energy results including the effect of mutation compare reasonably well with those of kinetic experiments that are available in the literature. The current work also provides molecular details of structural changes of the reactants and surroundings as the system dynamically evolves along the reaction pathway from reactant to the product state through QM/MM metadynamics simulations.
Collapse
Affiliation(s)
- Saheb Dutta
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
4
|
Zajac J, Anderson H, Adams L, Wangmo D, Suhail S, Almen A, Berns L, Coerber B, Dawson L, Hunger A, Jehn J, Johnson J, Plack N, Strasser S, Williams M, Bhattacharyya S, Hati S. Effects of Distal Mutations on Prolyl-Adenylate Formation of Escherichia coli Prolyl-tRNA Synthetase. Protein J 2020; 39:542-553. [PMID: 32681406 DOI: 10.1007/s10930-020-09910-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes play important roles in many biological processes. Amino acid residues in the active site pocket of an enzyme, which are in direct contact with the substrate(s), are generally believed to be critical for substrate recognition and catalysis. Identifying and understanding how these "catalytic" residues help enzymes achieve enormous rate enhancement has been the focus of many structural and biochemical studies over the past several decades. Recent studies have shown that enzymes are intrinsically dynamic and dynamic coupling between distant structural elements is essential for effective catalysis in modular enzymes. Therefore, distal residues are expected to have impact on enzyme function. However, few studies have investigated the role of distal residues on enzymatic catalysis. In the present study, the effects of distal residue mutations on the catalytic function of an aminoacyl-tRNA synthetase, namely, prolyl-tRNA synthase, were investigated. The present study demonstrates that distal residues significantly contribute to catalysis of the modular Escherichia coli prolyl-tRNA synthetase by maintaining intrinsic protein flexibility.
Collapse
Affiliation(s)
- Jonathan Zajac
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Heidi Anderson
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Lauren Adams
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Dechen Wangmo
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Shanzay Suhail
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Aimee Almen
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Lauren Berns
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Breanna Coerber
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Logan Dawson
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Andrea Hunger
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Julia Jehn
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Joseph Johnson
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Naomi Plack
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Steven Strasser
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Murphi Williams
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | | | - Sanchita Hati
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, USA.
| |
Collapse
|
5
|
Van Dyke AR, Gatazka DH, Hanania MM. Innovations in Undergraduate Chemical Biology Education. ACS Chem Biol 2018; 13:26-35. [PMID: 29192757 DOI: 10.1021/acschembio.7b00986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical biology derives intellectual vitality from its scientific interface: applying chemical strategies and perspectives to biological questions. There is a growing need for chemical biologists to synergistically integrate their research programs with their educational activities to become holistic teacher-scholars. This review examines how course-based undergraduate research experiences (CUREs) are an innovative method to achieve this integration. Because CUREs are course-based, the review first offers strategies for creating a student-centered learning environment, which can improve students' outcomes. Exemplars of CUREs in chemical biology are then presented and organized to illustrate the five defining characteristics of CUREs: significance, scientific practices, discovery, collaboration, and iteration. Finally, strategies to overcome common barriers in CUREs are considered as well as future innovations in chemical biology education.
Collapse
Affiliation(s)
- Aaron R. Van Dyke
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Daniel H. Gatazka
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Mariah M. Hanania
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| |
Collapse
|
6
|
Hati S, Bhattacharyya S. Incorporating modeling and simulations in undergraduate biophysical chemistry course to promote understanding of structure-dynamics-function relationships in proteins. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 44:140-159. [PMID: 26801683 DOI: 10.1002/bmb.20942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and simulations. In particular, modern computational tools are employed to elucidate the relationship between structure, dynamics, and function in proteins. Computer-based laboratory protocols that we introduced in three modules allow students to visualize the secondary, super-secondary, and tertiary structures of proteins, analyze non-covalent interactions in protein-ligand complexes, develop three-dimensional structural models (homology model) for new protein sequences and evaluate their structural qualities, and study proteins' intrinsic dynamics to understand their functions. In the fourth module, students are assigned to an authentic research problem, where they apply their laboratory skills (acquired in modules 1-3) to answer conceptual biophysical questions. Through this process, students gain in-depth understanding of protein dynamics-the missing link between structure and function. Additionally, the requirement of term papers sharpens students' writing and communication skills. Finally, these projects result in new findings that are communicated in peer-reviewed journals.
Collapse
Affiliation(s)
- Sanchita Hati
- Department of Chemistry, University Wisconsin, Eau Claire, Wisconsin
| | | |
Collapse
|
7
|
Dorner ME, McMunn RD, Bartholow TG, Calhoon BE, Conlon MR, Dulli JM, Fehling SC, Fisher CR, Hodgson SW, Keenan SW, Kruger AN, Mabin JW, Mazula DL, Monte CA, Olthafer A, Sexton AE, Soderholm BR, Strom AM, Hati S. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis. Protein Sci 2015; 24:1495-507. [PMID: 26130403 DOI: 10.1002/pro.2737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/18/2015] [Accepted: 06/14/2015] [Indexed: 12/24/2022]
Abstract
Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes.
Collapse
Affiliation(s)
- Mariah E Dorner
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Ryan D McMunn
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Thomas G Bartholow
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Brecken E Calhoon
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Michelle R Conlon
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Jessica M Dulli
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Samuel C Fehling
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Cody R Fisher
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Shane W Hodgson
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Shawn W Keenan
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Alyssa N Kruger
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Justin W Mabin
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Daniel L Mazula
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Christopher A Monte
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Augustus Olthafer
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Ashley E Sexton
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Beatrice R Soderholm
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Alexander M Strom
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| | - Sanchita Hati
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, 54702
| |
Collapse
|
8
|
Tiwari SP, Fuglebakk E, Hollup SM, Skjærven L, Cragnolini T, Grindhaug SH, Tekle KM, Reuter N. WEBnm@ v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics 2014; 15:427. [PMID: 25547242 PMCID: PMC4339738 DOI: 10.1186/s12859-014-0427-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise protein flexibility and by extension, their dynamics. Further insight into the dynamics-function relationship can be gained by comparing protein motions between protein homologs and functional classifications. This can be achieved by comparing normal modes obtained from sets of evolutionary related proteins. RESULTS We have developed an automated tool for comparative NMA of a set of pre-aligned protein structures. The user can submit a sequence alignment in the FASTA format and the corresponding coordinate files in the Protein Data Bank (PDB) format. The computed normalised squared atomic fluctuations and atomic deformation energies of the submitted structures can be easily compared on graphs provided by the web user interface. The web server provides pairwise comparison of the dynamics of all proteins included in the submitted set using two measures: the Root Mean Squared Inner Product and the Bhattacharyya Coefficient. The Comparative Analysis has been implemented on our web server for NMA, WEBnm@, which also provides recently upgraded functionality for NMA of single protein structures. This includes new visualisations of protein motion, visualisation of inter-residue correlations and the analysis of conformational change using the overlap analysis. In addition, programmatic access to WEBnm@ is now available through a SOAP-based web service. Webnm@ is available at http://apps.cbu.uib.no/webnma . CONCLUSION WEBnm@ v2.0 is an online tool offering unique capability for comparative NMA on multiple protein structures. Along with a convenient web interface, powerful computing resources, and several methods for mode analyses, WEBnm@ facilitates the assessment of protein flexibility within protein families and superfamilies. These analyses can give a good view of how the structures move and how the flexibility is conserved over the different structures.
Collapse
Affiliation(s)
- Sandhya P Tiwari
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Edvin Fuglebakk
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Siv M Hollup
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Lars Skjærven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Tristan Cragnolini
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
- Present address: University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Svenn H Grindhaug
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Kidane M Tekle
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| |
Collapse
|
9
|
Fuglebakk E, Tiwari SP, Reuter N. Comparing the intrinsic dynamics of multiple protein structures using elastic network models. Biochim Biophys Acta Gen Subj 2014; 1850:911-922. [PMID: 25267310 DOI: 10.1016/j.bbagen.2014.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Elastic network models (ENMs) are based on the simple idea that a protein can be described as a set of particles connected by springs, which can then be used to describe its intrinsic flexibility using, for example, normal mode analysis. Since the introduction of the first ENM by Monique Tirion in 1996, several variants using coarser protein models have been proposed and their reliability for the description of protein intrinsic dynamics has been widely demonstrated. Lately an increasing number of studies have focused on the meaning of slow dynamics for protein function and its potential conservation through evolution. This leads naturally to comparisons of the intrinsic dynamics of multiple protein structures with varying levels of similarity. SCOPE OF REVIEW We describe computational strategies for calculating and comparing intrinsic dynamics of multiple proteins using elastic network models, as well as a selection of examples from the recent literature. MAJOR CONCLUSIONS The increasing interest for comparing dynamics across protein structures with various levels of similarity, has led to the establishment and validation of reliable computational strategies using ENMs. Comparing dynamics has been shown to be a viable way for gaining greater understanding for the mechanisms employed by proteins for their function. Choices of ENM parameters, structure alignment or similarity measures will likely influence the interpretation of the comparative analysis of protein motion. GENERAL SIGNIFICANCE Understanding the relation between protein function and dynamics is relevant to the fundamental understanding of protein structure-dynamics-function relationship. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Edvin Fuglebakk
- Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway.
| | - Sandhya P Tiwari
- Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway.
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway.
| |
Collapse
|