1
|
Shaum JB, Nikolaev A, Steffens HC, Gonzalez L, Walker S, Samoshin AV, Hammersley G, La EH, Read de Alaniz J. Copper-Mediated Single-Electron Approach to Indoline Amination: Scope, Mechanism, and Total Synthesis of Asperazine A. J Org Chem 2022; 87:9907-9914. [PMID: 35876810 DOI: 10.1021/acs.joc.2c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrroloindolines bearing a C3-N linkage comprise the core of many biologically active natural products, but many methods toward their synthesis are limited by the sterics or electronics of the product. We report a single electron-based approach for the synthesis of this scaffold and demonstrate high-yielding aminations, regardless of electronic or steric demands. The transformation uses copper wire and isopropanol to promote the reaction. The broad synthetic utility of this heterogeneous copper-catalyzed approach to access pyrroloindolines, diketopiperazine, furoindoline, and (+)-asperazine is included, along with experiments to provide insight into the mechanism of this new process.
Collapse
Affiliation(s)
- James B Shaum
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Andrei Nikolaev
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Helena C Steffens
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Luis Gonzalez
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Shamon Walker
- Materials Department and Materials Research Laboratory, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Andrey V Samoshin
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Gabrielle Hammersley
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Ellia H La
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Lipstein N, Göth M, Piotrowski C, Pagel K, Sinz A, Jahn O. Presynaptic Calmodulin targets: lessons from structural proteomics. Expert Rev Proteomics 2017; 14:223-242. [DOI: 10.1080/14789450.2017.1275966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Noa Lipstein
- Department of Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Melanie Göth
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Free University Berlin, Berlin & Fritz Haber Institute of the Max-Planck-Society, Berlin, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
3
|
Zhang Y, Lin R, Tao J, Wu Y, Chen B, Yu K, Chen J, Li X, Chen LD. Electroacupuncture improves cognitive ability following cerebral ischemia reperfusion injury via CaM-CaMKIV-CREB signaling in the rat hippocampus. Exp Ther Med 2016; 12:777-782. [PMID: 27446275 DOI: 10.3892/etm.2016.3428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the effect of electroacupuncture (EA) on cognitive deficits, and the underlying mechanism following cerebral ischemia-reperfusion (I/R) via the calmodulin (CaM)-calmodulin-dependent protein kinase type IV (CaMKIV)-cyclic adenosine monophosphate response elements binding protein (CREB) intracellular signaling pathway in the hippocampus. In total, 45 adult female Sprague-Dawley rats were randomly divided into three groups, namely the sham group, the middle cerebral artery occlusion (MCAO) group and the MCAO + EA group. Rats in the MCAO and MCAO + EA groups were modeled for post-stroke cognitive impairment. EA was performed at the Baihui and Shenting acupuncture points for 30 min/day for one week in the MCAO + EA group. Behavioral testing was analyzed using a step-down apparatus, while 2,3,5-triphenyl tetrazolium chloride was used to detect the infarct volume and lesion size. In addition, CaM activity was assessed by cyclic nucleotide-dependent phosphodiesterase analysis, and the protein expression levels of CaM, CaMKIV, phosphorylated (p)-CaMKIV, CREB and p-CREB were analyzed by western blot analysis. The cerebral I/R injured rat model in the MCAO group was established successfully with regard to the infarct volume and neuronal lesion size, as compared with the sham group. EA was demonstrated to effectively improve the cognitive ability, as measured by the step-down apparatus test, and decrease the infarct volume when compared with the MCAO group (P<0.05). The step-down apparatus test for the EA-treated rats revealed improved learning and reduced memory impairment when compared with the MCAO group. Furthermore, CaM activity and CaM protein expression levels in the MCAO + EA group were lower compared with those in the MCAO group (P<0.05). By contrast, the protein expression levels of CaMKIV, p-CaMKIV, CREB and p-CREB were significantly reduced in the MCAO group when compared with the sham group (P<0.05), although the expression levels increased following EA treatment when compared with the MCAO group (P<0.05). Therefore, cognitive repair benefited from EA, and the main intracellular signaling pathway in the hippocampus was mediated by CaM-CaMKIV-CREB. EA effectively inhibited the expression and activity of CaM, while further enhancing the expression of CaMKIV and CREB, and their associated phosphorylated functions.
Collapse
Affiliation(s)
- Yun Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China; The Clinical Medicine Department, Fujian Health College, Fuzhou, Fujian 350101, P.R. China
| | - Ruhui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yunan Wu
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bin Chen
- Traditional Chinese Medicine Rehabilitation Research Center, State Administration of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Kunqiang Yu
- Traditional Chinese Medicine Rehabilitation Research Center, State Administration of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jixiang Chen
- Traditional Chinese Medicine Rehabilitation Research Center, State Administration of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaojie Li
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Li-Dian Chen
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|