1
|
Kumar A, Ghosh DK, Ranjan A. Mefloquine binding to human acyl-CoA binding protein leads to redox stress-mediated apoptotic death of human neuroblastoma cells. Neurotoxicology 2020; 77:169-180. [PMID: 31987860 DOI: 10.1016/j.neuro.2020.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Malaria is an infectious disease that is caused by different species of Plasmodium. Several antimalarial drugs are used to counter the spread and infectivity of Plasmodium species. However, humans are also vulnerable to many of the antimalarial drugs, including the quinoline-based drugs. In particular, the antimalarial mefloquine has been reported to show adverse neuropsychiatric effects in humans. Though mefloquine is known to be neurotoxic, the molecular mechanisms associated with this phenomenon are still obscure. In this study, we show that mefloquine binds to and inactivates the human acyl-CoA binding protein (hACBP), potentially inducing redox stress in human neuroblastoma cells (IMR-32). Mefloquine occupies the acyl-CoA binding pocket of hACBP by interacting with several of the critical acyl-CoA binding amino acids. This leads to the competitive inhibition of acyl-CoA(s) binding to hACBP and to the accumulation of lipid droplets inside the IMR-32 cells. The accumulation of cytosolic lipid globules and oxidative stress finally correlates with the apoptotic death of cells. Taken together, our study deciphers a mechanistic detail of how mefloquine leads to the death of human cells by perturbing the activity of hACBP and lipid homeostasis.
Collapse
Affiliation(s)
- Abhishek Kumar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India; Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India.
| |
Collapse
|
2
|
Ghosh DK, Kumar A, Ranjan A. T54R mutation destabilizes the dimer of superoxide dismutase 1T54R by inducing steric clashes at the dimer interface. RSC Adv 2020; 10:10776-10788. [PMID: 35492906 PMCID: PMC9050410 DOI: 10.1039/c9ra09870d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/28/2020] [Indexed: 11/29/2022] Open
Abstract
Mutations cause abnormalities in protein structure, function and oligomerization. Different mutations in the superoxide dismutase 1 (SOD1) protein cause its misfolding, loss of dimerization and aggravate its aggregation in the amyotrophic lateral sclerosis disease. In this study, we report the mechanistic details of how a threonine-to-arginine mutation at the 54th position (T54R) of SOD1 results in destabilization of the dimer interface of SOD1T54R. Using computational and experimental methods, we show that the T54R mutation increases fluctuation of the mutation-harboring loop (R54-loop) of SOD1T54R. Fluctuation of this loop causes steric clashes that involve arginine-54 (R54) and other residues of SOD1T54R, resulting in loss of inter-subunit contacts at the dimer interface. Since the T54 residue-containing loop is necessary for the dimerization of wild-type SOD1, fluctuation of the R54-loop, steric clashes involving R54 and loss of inter-subunit contacts give rise to the loss of SOD1T54R dimer stability. This correlates to energetically unfavorable tethering of the monomers of SOD1T54R. The outcome is gradual splitting of SOD1T54R dimers into monomers, thereby exposing the previously buried hydrophobic interface residues to the aqueous environment. This event finally leads to aggregation of SOD1T54R. T54R mutation has no effect in altering the relative positions of copper and zinc ion binding residues of SOD1T54R. The native SOD1 structure is stable, and there is no destabilizing effect at its dimer interface. Overall, our study reveals the intricate mechanism of T54R mutation-associated destabilization of the dimer of the SOD1T54R protein. T54R mutation destabilizes the dimer of SOD1T54R.![]()
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group
- Centre for DNA Fingerprinting and Diagnostics
- Hyderabad 500039
- India
| | - Abhishek Kumar
- Computational and Functional Genomics Group
- Centre for DNA Fingerprinting and Diagnostics
- Hyderabad 500039
- India
- Graduate Studies
| | - Akash Ranjan
- Computational and Functional Genomics Group
- Centre for DNA Fingerprinting and Diagnostics
- Hyderabad 500039
- India
| |
Collapse
|
3
|
Kong L, Liu J, Zheng X, Deng Z, You D. CtcS, a MarR family regulator, regulates chlortetracycline biosynthesis. BMC Microbiol 2019; 19:279. [PMID: 31823730 PMCID: PMC6905112 DOI: 10.1186/s12866-019-1670-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background Chlortetracycline (CTC) is one of the commercially important tetracyclines (TCs) family product and is mainly produced by Streptomyces. CTC is still in a great demand due to its broad-spectrum activity against pathogens. Engineering transcriptional control allows the cell to allocate its valuable resources towards protein production and provides an important method for the build-up of desired metabolites. Despite extensive efforts concerning transcriptional regulation for increasing the productivities of TCs, the regulatory mechanisms of the CTC biosynthesis remain poorly understood. Results In this study, the possible regulatory function of CtcS, a potential member of MarR (multiple antibiotic resistance regulator) family of transcriptional regulators in S. aureofaciens F3, was demonstrated. Knockdown of ctcS altered the transcription of several biosynthesis-related genes and reduced the production of tetracycline (TC) and CTC, without obvious effect on morphological differentiation and cell growth. Especially, CtcS directly repressed the transcription of the adjacent divergent gene ctcR (which encodes a putative TC resistance efflux protein). A CtcS-binding site was identified within the promoter region of ctcR by DNase I footprinting and an inverted repeat (5′-CTTGTC-3′) composed of two 6-nt half sites in the protected region was found. Moreover, both CTC and TC could attenuate the binding activity of CtcS with target DNA. Conclusion ctcS regulated the production of TC and CTC in S. aureofaciens F3 and the overexpression of it could be used as a simple approach for the construction of engineering strain with higher productivity. Meanwhile, CtcS was characterized as a TC- and CTC-responsive MarR family regulator. This study provides a previously unrecognized function of CtcS and will benefit the research on the regulatory machinery of the MarR family regulators.
Collapse
Affiliation(s)
- Lingxin Kong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jia Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaoqing Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Delin You
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
4
|
Ghosh DK, Ranjan A. An IRES-dependent translation of HYPK mRNA generates a truncated isoform of the protein that lacks the nuclear localization and functional ability. RNA Biol 2019; 16:1604-1621. [PMID: 31397627 DOI: 10.1080/15476286.2019.1650612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Different mechanisms of translation initiation process exist to start the protein synthesis from various viral and eukaryotic mRNA. The cap-independent and tertiary structure directed translation initiation of mRNAs forms the basis of internal ribosome entry site (IRES) mediated translation initiation that helps in cellular protein production in different conditions. HYPK protein sequesters different aggregation-prone proteins to help in the cellular proteostasis. HYPK mRNA is differentially translated from an internal start/initiation codon to generate an amino terminal-truncated isoform (HSPC136) of HYPK protein. In this study, we report that an IRES-dependent translation initiation of HYPK mRNA results in the formation of the HSPC136/HYPK-ΔN isoform of HYPK protein. The IRES-driven translation product, HYPK-ΔN, lacks the N-terminal tri-arginine motif that acts as the nuclear localization signal (NLS) in the full-length HYPK protein. While the full-length HYPK protein translocates to the nucleus and prevents the aggregation of the mutant p53 (p53-R248Q) protein, the HYPK-ΔN lacks this activity. The NLS of HYPK is not evolutionarily conserved and its exclusive presence in the HYPK of higher eukaryotic animals imparts additional advantage to the HYPK protein in tackling the cytosolic as well as nuclear protein aggregates. The presence of the NLS in full-length HYPK also allows this protein to modulate the cell cycle. These results provide a mechanistic detail of HYPK mRNA's translation initiation control by an IRES that dictates the formation of HYPC136/HYPK-ΔN which lacks the nuclear localization and functional ability.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana , India.,Graduate studies, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana , India
| |
Collapse
|
5
|
Kumar A, Ghosh DK, Ali J, Ranjan A. Characterization of Lipid Binding Properties of Plasmodium falciparum Acyl-Coenzyme A Binding Proteins and Their Competitive Inhibition by Mefloquine. ACS Chem Biol 2019; 14:901-915. [PMID: 30986346 DOI: 10.1021/acschembio.9b00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malaria remains a worldwide concern in terms of morbidity and mortality. Limited understanding of the Plasmodium proteome makes it challenging to control malaria. Understanding of the expression and functions of different Plasmodium proteins will help in knowing this organism's virulence properties, besides facilitating the drug development process. In this study, we characterize the lipid binding and biophysical properties of the putative Plasmodium falciparum acyl-CoA binding proteins (PfACBPs), which may have intriguing functions in different stages of P. falciparum life cycle. While the PfACBPs can bind to long-chain fatty acyl-CoAs with high affinity, their affinity for short-chain fatty acyl-CoAs is weak. Base-stacking, electrostatic, and hydrophobic interactions between the aromatic rings, charged groups or residues, and hydrophobic chains or residues are responsible for acyl-CoA binding to PfACBPs. PfACBPs can also bind to phospholipids. PfACBPs cannot bind to the fatty acids and unphosphorylated fatty acid esters. PfACBPs are globular-helical proteins that contain a conserved acyl-CoA binding region. They exist in folded or unfolded conformations without attaining any intermediate state. In a systematic high-throughput in silico screening, mefloquine is identified as a potential ligand of PfACBPs. Binding affinities of mefloquine are much higher than those of fatty acyl-CoAs for all PfACBPs. Mefloquine binds to the acyl-CoA binding pocket of PfACBPs, thereby engaging many of the critical residues. Thus, mefloquine acts as a competitive inhibitor against fatty acyl-CoA binding to PfACBPs, leading to the prevention of P. falciparum growth and proliferation. Taken together, our study characterizes the functions of annotated PfACBPs and highlights the mechanistic details of their inactivation by mefloquine.
Collapse
Affiliation(s)
- Abhishek Kumar
- Computational and Functional Genomics Group Centre for DNA Fingerprinting and Diagnostics Uppal, Hyderabad, Telangana 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Debasish Kumar Ghosh
- Computational and Functional Genomics Group Centre for DNA Fingerprinting and Diagnostics Uppal, Hyderabad, Telangana 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jamshaid Ali
- Computational and Functional Genomics Group Centre for DNA Fingerprinting and Diagnostics Uppal, Hyderabad, Telangana 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, Kerala 695014, India
| | - Akash Ranjan
- Computational and Functional Genomics Group Centre for DNA Fingerprinting and Diagnostics Uppal, Hyderabad, Telangana 500039, India
| |
Collapse
|
6
|
Metastable states of HYPK-UBA domain's seeds drive the dynamics of its own aggregation. Biochim Biophys Acta Gen Subj 2018; 1862:2846-2861. [DOI: 10.1016/j.bbagen.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022]
|
7
|
Ghosh DK, Roy A, Ranjan A. The ATPase VCP/p97 functions as a disaggregase against toxic Huntingtin-exon1 aggregates. FEBS Lett 2018; 592:2680-2692. [PMID: 30069866 DOI: 10.1002/1873-3468.13213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/12/2022]
Abstract
Intracellular protein aggregation is characterized by accumulation of misfolded proteins. Chaperones, degradation machineries, and quality-control mechanisms counteract protein aggregation. In this study, we report that the ATPase valosin-containing protein (VCP/p97) acts as a functional disaggregase that disassembles Huntingtin-exon1 aggregates in vitro and in HeLa cells. The N-terminal part of VCP (Cdc48_N domain) interacts with the N-terminal 17-amino acid region of Huntingtin-exon1. We show that VCP has properties of a disaggregase, since it is capable of reducing preformed protein aggregates and displays increased ATPase activity in the presence of protein aggregates. However, VCP shows high divergence/disparity from other disaggregases. Taken together, our studies show the novel function of VCP/p97 as a disaggregase which detangles protein aggregates to probably channelize their degradation.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Karnataka, India
| | - Ajit Roy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| |
Collapse
|
8
|
Vatlin AA, Bekker OB, Lysenkova LN, Shchekotikhin AE, Danilenko VN. A functional study of the global transcriptional regulator PadR from a strain Streptomyces fradiae-nitR+bld, resistant to nitrone-oligomycin. J Basic Microbiol 2018; 58:739-746. [PMID: 29963725 DOI: 10.1002/jobm.201800095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/20/2018] [Accepted: 06/09/2018] [Indexed: 01/30/2023]
Abstract
We describe Streptomyces fradiae mechanisms of sensitivity to nitrone-oligomycin A, a derivative of oligomycin A. We obtained S. fradiae-nitR+ bld, a nitrone-oligomycin A resistant mutant with a «bald» phenotype. Comparative genomic analysis of the wild-type S. fradiae ATCC19609 and S. fradiae-nitR+ bld revealed a mutation in padR - a gene encoding a multifunction transcription regulator, which resulted in the amino acid replacement in a highly conserved DNA-binding domain. Bioinformatics genome analysis of S. fradiae ATCC19609 discovered a PadR binding site 13 bp upstream the start codon of the marR transcription factor gene. Induction of S. fradiaenitR+ bld and w.t. strains with nitrone-oligomycin A lead to a significant increase in expression level of the marR gene in the w.t. strain, but no change observed in mutant strain. We identified differences between DNA-protein interactions of the mutant and native PadR proteins with its putative binding site in S. fradiae ATCC19609. This allowed us to suggest that the padR gene, that harbored a single nucleotide mutation in the S. fradiaenitR+ bld strain, might be involved in the mechanism of resistance to nitrone-oligomycin A. We assume the participation of the transcriptional factorpadR in the formation of the bald phenotype.
Collapse
Affiliation(s)
- Aleksey A Vatlin
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Olga B Bekker
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | | | | | - Valery N Danilenko
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Ghosh DK, Roy A, Ranjan A. Aggregation-prone Regions in HYPK Help It to Form Sequestration Complex for Toxic Protein Aggregates. J Mol Biol 2018; 430:963-986. [DOI: 10.1016/j.jmb.2018.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/24/2022]
|
10
|
Ghosh DK, Roy A, Ranjan A. Disordered Nanostructure in Huntingtin Interacting Protein K Acts as a Stabilizing Switch To Prevent Protein Aggregation. Biochemistry 2018; 57:2009-2023. [DOI: 10.1021/acs.biochem.7b00776] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
- Graduate Studies, Manipal University, Manipal, Karnataka 576104, India
| | - Ajit Roy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| |
Collapse
|