1
|
García-Domínguez M, Gutiérrez-Del-Río I, Villar CJ, Perez-Gomez A, Sancho-Martinez I, Lombó F. Structural diversification of vitamin D using microbial biotransformations. Appl Microbiol Biotechnol 2024; 108:409. [PMID: 38970663 PMCID: PMC11227467 DOI: 10.1007/s00253-024-13244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Vitamin D deficiencies are linked to multiple human diseases. Optimizing its synthesis, physicochemical properties, and delivery systems while minimizing side effects is of clinical relevance and is of great medical and industrial interest. Biotechnological techniques may render new modified forms of vitamin D that may exhibit improved absorption, stability, or targeted physiological effects. Novel modified vitamin D derivatives hold promise for developing future therapeutic approaches and addressing specific health concerns related to vitamin D deficiency or impaired metabolism, such as avoiding hypercalcemic effects. Identifying and engineering key enzymes and biosynthetic pathways involved, as well as developing efficient cultures, are therefore of outmost importance and subject of intense research. Moreover, we elaborate on the critical role that microbial bioconversions might play in the a la carte design, synthesis, and production of novel, more efficient, and safer forms of vitamin D and its analogs. In summary, the novelty of this work resides in the detailed description of the physiological, medical, biochemical, and epidemiological aspects of vitamin D supplementation and the steps towards the enhanced and simplified industrial production of this family of bioactives relying on microbial enzymes. KEY POINTS: • Liver or kidney pathologies may hamper vitamin D biosynthesis • Actinomycetes are able to carry out 1α- or 25-hydroxylation on vitamin D precursors.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Ignacio Gutiérrez-Del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain
| | | | | | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Principality of Asturias, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain.
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Spain.
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Spain.
| |
Collapse
|
2
|
Chmiel JA, Stuivenberg GA, Al KF, Akouris PP, Razvi H, Burton JP, Bjazevic J. Vitamins as regulators of calcium-containing kidney stones - new perspectives on the role of the gut microbiome. Nat Rev Urol 2023; 20:615-637. [PMID: 37161031 PMCID: PMC10169205 DOI: 10.1038/s41585-023-00768-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 05/11/2023]
Abstract
Calcium-based kidney stone disease is a highly prevalent and morbid condition, with an often complicated and multifactorial aetiology. An abundance of research on the role of specific vitamins (B6, C and D) in stone formation exists, but no consensus has been reached on how these vitamins influence stone disease. As a consequence of emerging research on the role of the gut microbiota in urolithiasis, previous notions on the contribution of these vitamins to urolithiasis are being reconsidered in the field, and investigation into previously overlooked vitamins (A, E and K) was expanded. Understanding how the microbiota influences host vitamin regulation could help to determine the role of vitamins in stone disease.
Collapse
Affiliation(s)
- John A Chmiel
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Gerrit A Stuivenberg
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Kait F Al
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Polycronis P Akouris
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, Western University, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotic Research, London, Ontario, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
3
|
Fu B, Yang L, Chen Q, Zhang Q, Zhang L, Yu P. Enhanced biosynthesis of physiologically active vitamin D3 by constructing recombinant Escherichia coli BL21 with a multienzyme system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Wang Z, Zeng Y, Jia H, Yang N, Liu M, Jiang M, Zheng Y. Bioconversion of vitamin D 3 to bioactive calcifediol and calcitriol as high-value compounds. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:109. [PMID: 36229827 PMCID: PMC9563128 DOI: 10.1186/s13068-022-02209-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
Biological catalysis is an important approach for the production of high-value-added compounds, especially for products with complex structures. Limited by the complex steps of chemical synthesis and low yields, the bioconversion of vitamin D3 (VD3) to calcifediol and calcitriol, which are natural steroid products with high added value and significantly higher biological activity compared to VD3, is probably the most promising strategy for calcifediol and calcitriol production, and can be used as an alternative method for chemical synthesis. The conversion efficiency of VD3 to calcifediol and calcitriol has continued to rise in the past few decades with the help of several different VD3 hydroxylases, mostly cytochrome P450s (CYPs), and newly isolated strains. The production of calcifediol and calcitriol can be systematically increased in different ways. Specific CYPs and steroid C25 dehydrogenase (S25DH), as VD3 hydroxylases, are capable of converting VD3 to calcifediol and calcitriol. Some isolated actinomycetes have also been exploited for fermentative production of calcifediol and calcitriol, although the VD3 hydroxylases of these strains have not been elucidated. With the rapid development of synthetic biology and enzyme engineering, quite a lot of advances in bioproduction of calcifediol and calcitriol has been achieved in recent years. Therefore, here we review the successful strategies of promoting VD3 hydroxylation and provide some perspective on how to further improve the bioconversion of VD3 to calcifediol and calcitriol.
Collapse
Affiliation(s)
- Zheyi Wang
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Yan Zeng
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Hongmin Jia
- China Animal Husbandry Industry Co. Ltd, Beijing, 100095 China
| | - Niping Yang
- grid.256885.40000 0004 1791 4722School of Life Sciences, Hebei University, No. 180 Wusi Dong Road, Baoding, 071002 China
| | - Mengshuang Liu
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Mingyue Jiang
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049 China
| | - Yanning Zheng
- grid.9227.e0000000119573309State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
5
|
Chen P, Ansari MJ, Bokov D, Suksatan W, Rahman ML, Sarjadi MS. A review on key aspects of wet granulation process for continuous pharmaceutical manufacturing of solid dosage oral formulations. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
The computational investigation of thermal conductivity of 11S globulin protein for biological applications: Molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Setia Budi H, Fakri Mustafa Y, Al-Hamdani MM, Surendar A, Ramezani M. Synthesis of heterocycles from propargylamines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2001660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | | | - Aravindhan Surendar
- Department of Pharmacology, saveetha dental College and hospital, saveetha institute of medical and technical sciences, Chennai, India
| | - Mehdi Ramezani
- Factuality of science, Department of chemistry, Uremia University, Urmia, Iran
| |
Collapse
|