1
|
Matsushima N, Kretsinger RH. Numerous variants of leucine rich repeats in proteins from nucleo-cytoplasmic large DNA viruses. Gene X 2022; 817:146156. [PMID: 35032616 DOI: 10.1016/j.gene.2021.146156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022] Open
Abstract
Leucine rich repeats (LRRs) occurring in tandem are 20-29 amino acids long. Eleven LRR types have been recognized. Sequence features of LRRs from viruses were investigated using over 600 LRR proteins from 89 species. Directly before, metagenome data of nucleo-cytoplasmic large dsDNA viruses (NCLDVs) have been published; the 2,074 NCLDVs encode 199,021 proteins. From the NCLDVs 547 LRR proteins were identified and 502 were used for analysis. Various variants of known LRR types were identified in viral LRRs. A comprehensive analysis of TpLRR and FNIP that belong to an LRR type was first performed. The repeating unit lengths (RULs) in five types are 19 residues which is the shortest among all LRRs. The RULs of eight LRR types including FNIP are one to five residues shorter than those of the known, corresponding LRR types. The conserved hydrophobic residues such as Leu, Val or Ile in the consensus sequences are frequently substituted by cysteine at one or two positions. Four unique LRR motifs that are different from those identified previously are observed. The present study enhances the previous result. An evolutionary scenario of short or unique LRR was discussed.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu 059-0464, Japan; Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
2
|
Matsushima N, Miyashita H, Kretsinger RH. Sequence features, structure, ligand interaction, and diseases in small leucine rich repeat proteoglycans. J Cell Commun Signal 2021; 15:519-531. [PMID: 33860400 DOI: 10.1007/s12079-021-00616-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Small leucine rich repeat proteoglycans (SLRPs) are a group of active components of the extracellular matrix in all tissues. SLRPs bind to collagens and regulate collagen fibril growth and fibril organization. SLRPs also interact with various cytokines and extracellular compounds, which lead to various biological functions such cell adhesion and signaling, proliferation, and differentiation. Mutations in SLRP genes are associated with human diseases. Now crystal structures of five SLRPs are available. We describe some features of amino acid sequence and structures of SLRPs. We also review ligand interactions and then discuss the interaction surfaces. Furthermore, we map mutations associated with human diseases and discuss possible effects on structures by the mutations.
Collapse
Affiliation(s)
- Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan.
- Center for Medical Education, Sapporo Medical University, Sapporo, 060-8556, Japan.
| | - Hiroki Miyashita
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu, 059-0464, Japan
- Hokubu Rinsho Co., Ltd, Sapporo, 060⎼0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
3
|
Batkhishig D, Enkhbayar P, Kretsinger RH, Matsushima N. A crucial residue in the hydrophobic core of the solenoid structure of leucine rich repeats. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140631. [PMID: 33631375 DOI: 10.1016/j.bbapap.2021.140631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Leucine rich repeats (LRRs) with 20-30 residues form a super helix arrangement. Individual LRRs are separated into a highly conserved segment with a highly conserved (HCS) and a variable segment (VS). In LRRs short β-strands in HCS stack in parallel, while VS adopts various secondary structures. Among eleven classes recognized, only RI-like, Cysteine-containing (CC), and GALA classes adopt an α-helix. However, the repeat unit lengths are usually different from each other. We performed some analyses based on the atomic coordinates in the known LRR structures. In the VS consensuses of the three classes, position 8 in the VS part is, in common, occupied by conserved aliphatic residue adopting an α-helix. This aliphatic residue is near to the two conserved hydrophobic residues at position 4 (in the center of β-strands) in two adjacent HCS parts. The conserved aliphatic residue plays a crucial role to preserve two parallel β-strands.
Collapse
Affiliation(s)
- Dashdavaa Batkhishig
- Department of Physics, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar 210648, Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia.
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu 059-0464, Japan; Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.
| |
Collapse
|
4
|
Ye Y, Xiong Y, Huang H. Substrate-binding destabilizes the hydrophobic cluster to relieve the autoinhibition of bacterial ubiquitin ligase IpaH9.8. Commun Biol 2020; 3:752. [PMID: 33303953 PMCID: PMC7728815 DOI: 10.1038/s42003-020-01492-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
IpaH enzymes are bacterial E3 ligases targeting host proteins for ubiquitylation. Two autoinhibition modes of IpaH enzymes have been proposed based on the relative positioning of the Leucine-rich repeat domain (LRR) with respect to the NEL domain. In mode 1, substrate-binding competitively displaces the interactions between theLRR and NEL to relieve autoinhibition. However, the molecular basis for mode 2 is unclear. Here, we present the crystal structures of Shigella IpaH9.8 and the LRR of IpaH9.8 in complex with the substrate of human guanylate-binding protein 1 (hGBP1). A hydrophobic cluster in the C-terminus of IpaH9.8LRR forms a hydrophobic pocket involved in binding the NEL domain, and the binding is important for IpaH9.8 autoinhibition. Substrate-binding destabilizes the hydrophobic cluster by inducing conformational changes of IpaH9.8LRR. Arg166 and Phe187 in IpaH9.8LRR function as sensors for substrate-binding. Collectively, our findings provide insights into the molecular mechanisms for the actication of IpaH9.8 in autoinhibition mode 2. Ye, Xiong et al. present crystal structures of bacterial E3 ubiquitin ligase IpaH9.8 and IpaH9.8LRR–hGBP1. They find that substrate-binding destabilizes the hydrophobic cluster to relieve the autoinhibition of IpaH9.8. This study provides insights into the mechanisms underlying substrate-induced activation of IpaH9.8.
Collapse
Affiliation(s)
- Yuxin Ye
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China. .,Shenzhen Bay Laboratory Pingshan Translational Medicine Center, Shenzhen, China. .,Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| | - Yuxian Xiong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.,Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Hao Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055, Shenzhen, China. .,Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
5
|
Shrinking of repeating unit length in leucine-rich repeats from double-stranded DNA viruses. Arch Virol 2020; 166:43-64. [PMID: 33052487 DOI: 10.1007/s00705-020-04820-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Leucine-rich repeats (LRRs) are present in over 563,000 proteins from viruses to eukaryotes. LRRs repeat in tandem and have been classified into fifteen classes in which the repeat unit lengths range from 20 to 29 residues. Most LRR proteins are involved in protein-protein or ligand interactions. The amount of genome sequence data from viruses is increasing rapidly, and although viral LRR proteins have been identified, a comprehensive sequence analysis has not yet been done, and their structures, functions, and evolution are still unknown. In the present study, we characterized viral LRRs by sequence analysis and identified over 600 LRR proteins from 89 virus species. Most of these proteins were from double-stranded DNA (dsDNA) viruses, including nucleocytoplasmic large dsDNA viruses (NCLDVs). We found that the repeating unit lengths of 11 types are one to five residues shorter than those of the seven known corresponding LRR classes. The repeating units of six types are 19 residues long and are thus the shortest among all LRRs. In addition, two of the LRR types are unique and have not been observed in bacteria, archae or eukaryotes. Conserved strongly hydrophobic residues such as Leu, Val or Ile in the consensus sequences are replaced by Cys with high frequency. Phylogenetic analysis indicated that horizontal gene transfer of some viral LRR genes had occurred between the virus and its host. We suggest that the shortening might contribute to the survival strategy of viruses. The present findings provide a new perspective on the origin and evolution of LRRs.
Collapse
|
6
|
Batkhishig D, Enkhbayar P, Kretsinger RH, Matsushima N. A strong correlation between consensus sequences and unique super secondary structures in leucine rich repeats. Proteins 2020; 88:840-852. [DOI: 10.1002/prot.25876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/03/2020] [Accepted: 01/25/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Dashdavaa Batkhishig
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied SciencesNational University of Mongolia Ulaanbaatar Mongolia
- Department of Physics, School of Mathematics and Natural SciencesMongolian National University of Education Ulaanbaatar Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied SciencesNational University of Mongolia Ulaanbaatar Mongolia
| | | | - Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats Noboribetsu Japan
- Center for Medical Education, Sapporo Medical University Sapporo Japan
| |
Collapse
|
7
|
Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein Pept Lett 2019; 26:108-131. [PMID: 30526451 DOI: 10.2174/0929866526666181208170027] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the genes encoding Leucine Rich Repeat (LRR) containing proteins are associated with over sixty human diseases; these include high myopia, mitochondrial encephalomyopathy, and Crohn's disease. These mutations occur frequently within the LRR domains and within the regions that shield the hydrophobic core of the LRR domain. The amino acid sequences of fifty-five LRR proteins have been published. They include Nod-Like Receptors (NLRs) such as NLRP1, NLRP3, NLRP14, and Nod-2, Small Leucine Rich Repeat Proteoglycans (SLRPs) such as keratocan, lumican, fibromodulin, PRELP, biglycan, and nyctalopin, and F-box/LRR-repeat proteins such as FBXL2, FBXL4, and FBXL12. For example, 363 missense mutations have been identified. Replacement of arginine, proline, or cysteine by another amino acid, or the reverse, is frequently observed. The diverse effects of the mutations are discussed based on the known structures of LRR proteins. These mutations influence protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation. Most of the mutations cause loss of function and a few, gain of function.
Collapse
Affiliation(s)
- Norio Matsushima
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.,Institute of Tandem Repeats, Noboribetsu 059-0464, Japan
| | - Shintaro Takatsuka
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroki Miyashita
- Institute of Tandem Repeats, Noboribetsu 059-0464, Japan.,Hokubu Rinsho Co., Ltd, Sapporo 060-0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
8
|
Matsushima N, Miyashita H, Tamaki S, Kretsinger RH. Polyproline II Helix as a Recognition Motif of Plant Peptide Hormones and Flagellin Peptide flg22. Protein Pept Lett 2019; 26:684-690. [DOI: 10.2174/0929866526666190408125441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Background:
Plant peptide hormones play a crucial role in plant growth and
development. A group of these peptide hormones are signaling peptides with 5 - 23 amino acids.
Flagellin peptide (flg22) also elicits an immune response in plants. The functions are expressed
through recognition of the peptide hormones and flg22. This recognition relies on membrane
localized receptor kinases with extracellular leucine rich repeats (LRR-RKs). The structures of
plant peptide hormones - AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of flg22 complexed
with LRR domains of corresponding LRRRKs and co-receptors SERKs have been determined.
However, their structures are well not analyzed and characterized in detail. The structures of PIP,
CEP, CIF, and HypSys are still unknown.
Objective:
Our motivation is to clarify structural features of these plant, small peptides and Flg22 in
their bound states.
Methods:
In this article, we performed secondary structure assignments and HELFIT analyses
(calculating helix axis, pitch, radius, residues per turn, and handedness) based on the atomic
coordinates from the crystal structures of AtPep1, IDA, IDL1, RGFs 1- 3, TDIF/CLE41 - and of
flg22. We also performed sequence analysis of the families of PIP, CEP, CIF, and HypSys in order
to predict their secondary structures.
Results:
Following AtPep1 with 23 residues adopts two left handed polyproline helices (PPIIs)
with six and four residues. IDA, IDL1, RGFs 1 - 2, and TDIF/CLE41 with 12 or 13 residues adopt
a four residue PPII; RGF3 adopts two PPIIs with four residues. Flg22 with 22 residues also adopts a
six residue PPII. The other peptide hormones – PIP, CEP, CIF, and HypSys – that are rich in
proline or hydroxyproline presumably prefer PPII.
Conclusion:
The present analysis indicates that PPII helix in the plant small peptide hormones and
in flg22 is crucial for recognition of the LRR domains in receptors.
Collapse
Affiliation(s)
| | | | | | - Robert H. Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|