1
|
Chetty R, Delport A, Mthembu S, Veale CGL, Hewer R. Screening the Pandemic Response Box identifies novel ligands of the Staphylococcus aureus protein arginine kinase, McsB. Mol Biol Rep 2025; 52:446. [PMID: 40327182 PMCID: PMC12055656 DOI: 10.1007/s11033-025-10545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The protein arginine kinase, McsB, plays a pivotal role in the stress-response mechanism of gram-positive bacteria and represents a potential target to combat gram-positive pathogens. There are currently no recorded ligands or inhibitors reported for bacterial McsB. METHODS AND RESULTS We sought to identify novel ligands for the Staphylococcus aureus McsB by screening the Pandemic Response Box using thermal shift and cellular thermal shift assays. Six compounds were identified as McsB ligands, inducing positive shifts in the melting and aggregating temperature of the protein. Compounds MMV1593539 and MMV1782355 imparted the greatest stability to McsB across both assays. While none of the six McsB-targeting ligands yielded anti-bacterial effect against S. aureus under standard or heat stress conditions, MMV1634391, MMV1633968 and MMV1782213 effectively potentiated the activity of ciprofloxacin. Molecular docking and dynamic studies predict the ATP pocket of McsB as the likely binding site for MMV1593539 and MMV1782355. CONCLUSIONS Compounds MMV1593539 and MMV1782355 stabilised McsB in two thermal stability assays while returning the most favourable docking scores and retaining protein-ligand stability in molecular dynamics. These ligands signify promising candidates for future drug discovery efforts aimed at inhibiting or exploiting the protein arginine kinase, McsB.
Collapse
Affiliation(s)
- Ryan Chetty
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Sandile Mthembu
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Clinton G L Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| |
Collapse
|
2
|
Delport A, Hewer R. A superior loading control for the cellular thermal shift assay. Sci Rep 2022; 12:6672. [PMID: 35461337 PMCID: PMC9035151 DOI: 10.1038/s41598-022-10653-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
The cellular thermal shift assay (CETSA), as a method to determine protein-ligand interaction and cellular protein modification, has rapidly become routine laboratory practice. However, current options to determine that (1) sample was loaded in each lane of the analysed western blot and (2) the amount loaded was equal, are suboptimal. Here, we report that the αC-terminal fragment of the amyloid precursor protein (APP-αCTF), detected in several wild-type mammalian cell lines, is a highly stable, soluble protein equally present from 4 to 95 °C. We demonstrate that the level of traditional loading controls (vinculin, GAPDH, β-actin, heat-shock chaperone 70 and superoxide dismutase-1) are all temperature sensitive. Additionally, both APP-CTFs (α and β) behaved similarly upon temperature exposure while APP-βCTF levels were not influenced by the presence of a binding ligand either. This emphasises that these proteins can be used as a loading control in the unlikely event of off-target binding during ligand screening. A working example is also presented for mitogen-activated protein kinase kinase in the presence of two inhibitors, PD184352 and U0126, where APP-αCTF was used to normalise the data across experimental replicates. A reduction in data variance and standard deviations was observed after normalisation. Conclusively, APP-αCTF is a superior CETSA loading control that can be used as a standard for this technique.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
3
|
Chambers M, Delport A, Hewer R. The use of the cellular thermal shift assay for the detection of intracellular beta-site amyloid precursor protein cleaving enzyme-1 ligand binding. Mol Biol Rep 2021; 48:2957-2962. [PMID: 33665787 DOI: 10.1007/s11033-021-06229-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/10/2021] [Indexed: 11/26/2022]
Abstract
Inhibition of the Alzheimer's disease associated protein β-site amyloid precursor protein cleaving enzyme-1 (BACE1) remains a potential avenue for treatment of this disease. The cellular thermal shift assay (CETSA) is an attractive method of screening for protein binding molecules due to its ability to detect intracellular binding while avoiding the need to purify the protein in question. Here, the CETSA was carried out using the known BACE1 inhibitor verubecestat, where an increase in Tagg to 53.27 ± 0.89 °C from 49.53 ± 0.69 °C was observed. Three test compounds from the ChemBridge DiverSet compound library, identified to bind BACE1 using differential scanning fluorimetry, were then screened using the CETSA. Only compound C34 yielded a significant increase in Tagg (p value ≤ 0.05), indicative of intracellular binding. This is the first description of the cellular thermal shift assay being used to detect BACE1 binding molecules, with one novel BACE1 binding molecule being validated.
Collapse
Affiliation(s)
- Mark Chambers
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| |
Collapse
|
4
|
Phan LMT, Hoang TX, Vo TAT, Pham HL, Le HTN, Chinnadayyala SR, Kim JY, Lee SM, Cho WW, Kim YH, Choi SH, Cho S. Nanomaterial-based Optical and Electrochemical Biosensors for Amyloid beta and Tau: Potential for early diagnosis of Alzheimer's Disease. Expert Rev Mol Diagn 2021; 21:175-193. [PMID: 33560154 DOI: 10.1080/14737159.2021.1887732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), a heterogeneous pathological process representing the most common causes of dementia worldwide, has required early and accurate diagnostic tools. Neuropathological hallmarks of AD involve the aberrant accumulation of Amyloid beta (Aβ) into Amyloid plaques and hyperphosphorylated Tau into neurofibrillary tangles, occurring long before the onset of brain dysfunction.Areas covered:Considering the significance of Aβ and Tau in AD pathogenesis, these proteins have been adopted as core biomarkers of AD, and their quantification has provided precise diagnostic information to develop next-generation AD therapeutic approaches. However, conventional diagnostic methods may not suffice to achieve clinical criteria that are acceptable for proper diagnosis and treatment. The advantages of nanomaterial-based biosensors including facile miniaturization, mass fabrication, ultra-sensitivity, make them useful to be promising tools to measure Aβ and Tau simultaneously for accurate validation of low-abundance yet potentially informative biomarkers of AD.. EXPERT OPINION The study has identified the potential application of advanced biosensors as standardized clinical diagnostic tools for AD, evolving the way for new and efficient AD control with minimum economic and social burden. After clinical trial, nanobiosensors for measuring Aβ and Tau simultaneously possess innovative diagnosis of AD to provide significant contributions to primary Alzheimer's care intervention.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,School of Medicine and Pharmacy, The University of Danang, Danang, Vietnam
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hoang Lan Pham
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hien T Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | | | - Won Woo Cho
- Cantis Inc., Ansan-si, Gyeonggi-do, Republic of Korea
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
5
|
The amyloid precursor protein affects glyceraldehyde 3-phosphate dehydrogenase levels, organelle localisation and thermal stability. Mol Biol Rep 2020; 47:3019-3024. [PMID: 32152789 DOI: 10.1007/s11033-020-05364-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/29/2020] [Indexed: 02/08/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase's (GAPDH) proapoptotic response to cellular oxidative stress has suspected implication for Alzheimer's disease (AD). Interestingly, the overexpression of the amyloid precursor protein (APP) can initiate oxidative stress responses within mammalian cell lines. Here, APP695 and APP770 overexpression significantly increased the level of GAPDH, while no effect was observed when the APP homologues APLP1 or APLP2 were used. Heterologous expression of APP695 was shown to increase the level of GAPDH within the cytoplasm by over 100% and within the mitochondria by approximately 50%. Moreover, a shift in organelle distribution from cytoplasm > nucleus > mitochondria in control cell lines to cytoplasm > mitochondria > nucleus in the APP695 overexpressing cell line was also observed. Further, the overexpression of APP695 increased GAPDH aggregation temperature by 3.09 ± 0.46 °C, indicative of greater thermal stability. These results demonstrate a clear correlation between APP overexpression and GAPDH levels, organelle distribution and thermal stability.
Collapse
|