1
|
Costa TGF, de Assis TCS, Caetano Costa JM, Saavedra-Langer R, Santo TS, Bonilla Ferreira CA, Machado-de-Ávila RA, Felicori L, Guerra-Duarte C, Lopes-de-Souza L, Chávez-Olórtegui C. Development of a neutralizing monoclonal antibody targeting Bothrops atrox venom metalloproteinases. Int J Biol Macromol 2025; 311:143608. [PMID: 40300685 DOI: 10.1016/j.ijbiomac.2025.143608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Snakebites are classified as a neglected tropical disease by the World Health Organization. In South America's tropical rainforests, Bothrops genus, particularly Bothrops atrox, is responsible for most incidents. Severe local effects, such as hemorrhage, are primarily caused by snake venom metalloproteinases (SVMPs), which are not fully neutralized by conventional therapy. Here, we report the production of a neutralizing monoclonal antibody (mAb) against the hemorrhagic activity of B. atrox venom metalloproteinases. mAbs were produced by immunization of BALB/c mice using the B. atrox venom (BaV). The resulting hybridomas were screened by ELISA using BaV as antigen. The selected clone 4H4D11 (mAb-BaSVMP) showed cross-reactivity with other medically important species of Bothrops snakes in Brazil and Peru. Western blot assays revealed that the produced mAb binds to proteins with molecular masses of approximately 50 kDa and 20 kDa in BaV and recognizes native Atroxlysin-III and Atroxlysin-I by ELISA. mAb-BaSVMP did not bind to a cellulose membrane containing the primary sequence of a metalloproteinase, suggesting that it may recognize a conformational epitope. Additionally, mAb-BaSVMP neutralizes the in vivo hemorrhagic activity caused by BaV in mice. These results highlight the potential usefulness of mAb-BaSVMP for developing effective antivenoms for passive immunotherapy against bothropic envenomation.
Collapse
Affiliation(s)
| | | | - Julia M Caetano Costa
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Saavedra-Langer
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thalita Silverio Santo
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Liza Felicori
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Leticia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Abstract
The deleterious consequences of snake envenomation are due to the extreme protein complexity of snake venoms. Therefore, the identification of their components is crucial for understanding the clinical manifestations of envenomation pathophysiology and for the development of effective antivenoms. In addition, snake venoms are considered as libraries of bioactive molecules that can be used to develop innovative drugs. Numerous separation and analytical techniques are combined to study snake venom composition including chromatographic techniques such as size exclusion and RP-HPLC and electrophoretic techniques. Herein, we present in detail these existing techniques and their applications in snake venom research. In the first part, we discuss the different possible technical combinations that could be used to isolate and purify SV proteins using what is known as bioassay-guided fractionation. In the second part, we describe four different proteomic strategies that could be applied for venomics studies to evaluate whole venom composition, including the mostly used technique: RP-HPLC. Eventually, we show that to date, there is no standard technique used for the separation of all snake venoms. Thus, different combinations might be developed, taking into consideration the main objective of the study, the available resources, and the properties of the target molecules to be isolated.
Collapse
|