1
|
Soma N, Kikuta S. Transgenerational Plasticity of Maternal Hemolymph Trehalose in Aphids. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70030. [PMID: 39835501 PMCID: PMC11748192 DOI: 10.1002/arch.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood. This study focused on the role of trehalose, a primary sugar in the maternal hemolymph, in facilitating adaptive plasticity. Trehalose serves as an energy source and may act as a carrier of environmental information from the mother to offspring, potentially influencing resilience and adaptability. The results showed that winged adult aphids have higher levels of trehalose than wingless morphs, and that these elevated trehalose levels are inherited by their first-instar nymphs. This transfer may help the offspring of winged aphids survive in resource-poor environments after migration. Gene expression analysis showed the upregulation of trehalose metabolism genes in winged adults, possibly to meet the increased energy demands of flight and reproduction. However, trehalose metabolism in embryos appears to be regulated independently of postnatal nutrient uptake. In vitro studies further suggested that trehalose can directly penetrate the oocyte sheath and embryo membrane, supporting a direct pathway for trehalose transfer. These findings highlight the adaptive role of trehalose in aphid development and suggest a potential mechanism for nutrient-based transgenerational plasticity in aphids.
Collapse
Affiliation(s)
- Naomi Soma
- College of AgricultureIbaraki UniversityInashikiJapan
| | - Shingo Kikuta
- College of AgricultureIbaraki UniversityInashikiJapan
| |
Collapse
|
2
|
Wu Y, Hu S, Mao Q, Shi D, Liu X, Liu B, Hua L, Hu G, Li C, Duan H, Tang B. The impact of three thioxothiazolidin compounds on trehalase activity and development of Spodoptera frugiperda larvae. PeerJ 2024; 12:e18233. [PMID: 39399419 PMCID: PMC11470766 DOI: 10.7717/peerj.18233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Trehalases (TREs), serving as crucial enzymes regulating trehalose and chitin metabolism in insects, represent prime targets for pest control strategies. We investigated the impact of three thioxothiazolidin compounds (1G, 2G, and 11G) on TRE activity and summarized their effects on the growth and development of Spodoptera frugiperda (Lepidoptera, Noctuidae). The experimental larvae of S. frugiperda were injected with the three thioxothiazolidin compounds (1G, 2G, and 11G), while the control group received an equivalent volume of 2% DMSO as a control. All three compounds had a strong effect on inhibiting TRE activity, significantly prolonging the pre-pupal development stage. However, compared with the 11G-treated group, the survival rate of larvae treated with 1G and 2G was significantly reduced by 31.11% and 27.78% respectively, while the occurrence of phenotypic abnormalities related to growth and development was higher. These results manifest that only the TRE inhibitors, 1G and 2G, modulate trehalose and chitin metabolism pathways of larvae, ultimately resulting in the failure molting and reduction of survival rates. Consequently, the thioxothiazolidin compounds, 1G and 2G, hold potential as environmentally friendly insecticides.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Shangrong Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qixuan Mao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Dongmei Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xiangyu Liu
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Busheng Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Liyuhan Hua
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Can Li
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Guizhou Education Department, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Yoshinaga M, Soma N, Kikuta S. Postnatal Wing Morph of Pea Aphids Regulates Hemolymph Trehalose Levels. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e22156. [PMID: 39387433 DOI: 10.1002/arch.22156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Trehalose, a nonreducing disaccharide composed of two glucose molecules, functions as a critical energy source in various insect tissues and organs and is the predominant sugar component of the hemolymph. The pea aphid, Acyrthosiphon pisum, exhibits higher hemolymph trehalose levels than other insects. However, the dynamics of hemolymph trehalose levels throughout its life stages remain unclear owing to the challenges associated with obtaining hemolymph from these small insects. Therefore, this study was conducted to quantify hemolymph trehalose levels in A. pisum using a fluorescent trehalose sensor (Tre-C04), which enhances green fluorescent protein fluorescence through the binding of trehalose to a ligand-binding protein fused to the fluorophore. Trehalose levels were successfully quantified in minimal hemolymph samples from individual aphids, with measurements spanning from the first nymphal stage to the adult stage in both the winged and wingless forms of A. pisum. Hemolymph trehalose levels remained relatively stable throughout the life cycle but exhibited a gradual increase with each developmental stage. Notably, adult winged aphids exhibited significantly higher hemolymph trehalose levels than wingless aphids. Given that wing morph determination occurs early in the nymphal stage, these findings suggest that hemolymph trehalose levels are regulated post-wing morph development. Further investigation of the expression of genes associated with trehalose metabolism revealed that trehalose phosphate synthase 2 levels were downregulated in early-stage wingless adults, whereas insulin-related peptide 5 levels were upregulated in wingless aphids. These findings indicate that A. pisum synthesizes trehalose during the winged adult stage to serve as an energy source for flight.
Collapse
Affiliation(s)
- Mayu Yoshinaga
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Naomi Soma
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Shingo Kikuta
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| |
Collapse
|
4
|
Zheng X, Yuan J, Qian K, Tang Y, Wang J, Zhang Y, Feng J, Cao H, Xu B, Zhang Y, Liang P, Wu Q. Identification and RNAi-based function analysis of trehalase family genes in Frankliniella occidentalis (Pergande). PEST MANAGEMENT SCIENCE 2024; 80:2839-2850. [PMID: 38323792 DOI: 10.1002/ps.7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Insects utilize trehalases (TREs) to regulate energy metabolism and chitin biosynthesis, which are essential for their growth, development, and reproduction. TREs can therefore be used as potential targets for future insecticide development. However, the roles of TREs in Frankliniella occidentalis (Pergande), a serious widespread agricultural pest, remain unclear. RESULTS Three TRE genes were identified in F. occidentalis and cloned, and their functions were then investigated via feeding RNA interference (RNAi) and virus-induced gene silencing (VIGS) assays. The results showed that silencing FoTRE1-1 or FoTRE1-2 significantly decreased expression levels of FoGFAT, FoPGM, FoUAP, and FoCHS, which are members of the chitin biosynthesis pathway. Silencing FoTRE1-1 or FoTRE2 significantly down-regulated FoPFK and FoPK, which are members of the energy metabolism pathway. These changes resulted in 2-fold decreases in glucose and glycogen content, 2-fold increases in trehalose content, and 1.5- to 2.0-fold decreases in chitinase activity. Furthermore, knocking down FoTRE1-1 or FoTRE1-2 resulted in deformed nymphs and pupae as a result of hindered molting. The VIGS assay for the three FoTREs revealed that FoTRE1-1 or FoTRE2 caused shortened ovarioles, and reduced egg-laying and hatching rates. CONCLUSION The results suggest that FoTRE1-1 and FoTRE1-2 play important roles in the growth and development of F. occidentalis, while FoTRE1-1 and FoTRE2 are essential for its reproduction. These three genes could be candidate targets for RNAi-based management and control of this destructive agricultural pest. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaobin Zheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jiangjiang Yuan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanghua Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingxi Tang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiuming Feng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyi Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoyun Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Neyman V, Quicray M, Francis F, Michaux C. Toxicological, biochemical, and in silico investigations of three trehalase inhibitors for new ways to control aphids. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22112. [PMID: 38605672 DOI: 10.1002/arch.22112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on Acyrthosiphon pisum aphid. The latter is part of the Aphididae family, main pests as phytovirus vectors and being very harmful for crops. Validamycin A was confirmed as an excellent trehalase inhibitor with an half maximal inhibitory concentration and inhibitor constant of 2.2 × 10-7 and 5 × 10-8 M, respectively, with a mortality rate of ~80% on a A. pisum population. Unlike validamycin A, the insect lethal efficacy of amygdalin and phloridzin did not correspond to their trehalase inhibition, probably due to their hydrolysis by insect β-glucosidases. Our docking studies showed that none of the three compounds can bind to the trehalase active site, unlike their hydrolyzed counterparts, that is, validoxylamine A, phloretin, and prunasin. Validoxylamine A would be by far the best trehalase binder, followed by phloretin and prunasin.
Collapse
Affiliation(s)
- Virgile Neyman
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, Namur, Belgium
- Functional and Evolutionary Entomology, TERRA, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Namur Institute of Structures Matter (NISM), University of Namur, Namur, Belgium
- Evolution and Ecophysiology Group, TERRA, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Maude Quicray
- Institute of Life Earth and Environment (ILEE), University of Namur, Namur, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, TERRA, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, Namur, Belgium
- Namur Institute of Structures Matter (NISM), University of Namur, Namur, Belgium
- Namur Research, Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
6
|
Su C, Gong JS, Dong Q, Wang NK, Li H, Shi JS, Xu ZH. Efficient production and characterization of a newly identified trehalase for inhibiting the formation of bacterial biofilms. Int J Biol Macromol 2024; 262:129928. [PMID: 38309393 DOI: 10.1016/j.ijbiomac.2024.129928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Trehalase has attracted widespread attention in medicine, agriculture, food, and ethanol industry due to its ability to specifically degrade trehalose. Efficient expression of trehalase remains a challenge. In this study, a putative trehalase-encoding gene (Tre-zm) from Zunongwangia mangrovi was explored using gene-mining strategy and heterologously expressed in E. coli. Trehalase activity reached 3374 U·mL-1 after fermentation optimization. The scale-up fermentation in a 15 L fermenter was achieved with a trehalase production of 15,068 U·mL-1. The recombinant trehalase TreZM was purified and characterized. It displayed optimal activity at 35 °C and pH 8.5, with Mn2+, Sn2+, Na+, and Fe2+ promoting the activity. Notably, TreZM showed significant inhibition effect on biofilm forming of Staphylococcus epidermidis. The combination of TreZM with a low concentration of antibiotics could inhibit 70 % biofilm formation of Staphylococcus epidermidis and 28 % of Pseudomonas aeruginosa. Hence, this study provides a promising candidate for industrial production of trehalase and highlights its potential application to control harmful biofilms.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, PR China.
| | - Qi Dong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Nan-Kai Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, PR China.
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, PR China
| |
Collapse
|
7
|
Wang Z, Long G, Zhu H, Jin D, Yang H, Zhou C. Silencing of Glutamine: Fructose-6-Phosphate Aminotransferase Impairs Growth and Development in Sogatella furcifera (Hemiptera: Delphacidae). Biomolecules 2023; 13:1433. [PMID: 37892115 PMCID: PMC10604220 DOI: 10.3390/biom13101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Glutamine: fructose-6-phosphate aminotransferase (GFAT), the fourth enzyme in the chitin synthesis pathway, exerts wide-ranging effects on the growth and development of organisms. However, the role of GFAT in Sogatella furcifera remains unknown. In this study, the functional significance of the GFAT gene of S. furcifera was analyzed using a reverse transcription-polymerase chain reaction and RNA interference (RNAi) analyses. The complementary DNA sequence of SfGFAT was 3162 bp in length and contained a 2067 bp open reading frame encoding 688 amino acid residues. Structural domain analysis indicated that the SfGFAT protein consisted of one glutamine aminotransferase class 2 domain and two sugar isomerase domains. Expression profile analysis revealed that SfGFAT was expressed throughout the egg, nymph, and adult phases and was strongly expressed on the first day of each nymph stage and in the integuments of five tissues. RNAi results revealed that SfGFAT gene silencing significantly inhibited the mRNA expression of the target gene and resulted in severe mortality among S. furcifera. In summary, these findings demonstrate that SfGFAT plays a critical role in the development of S. furcifera. Moreover, these results may aid in the development of methods to control the spread of S. furcifera.
Collapse
Affiliation(s)
- Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China; (Z.W.); (H.Z.)
| | - Guiyun Long
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang 550025, China;
| | - Huan Zhu
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China; (Z.W.); (H.Z.)
| | - Daochao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions and Scientific Observation and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Cao Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| |
Collapse
|
8
|
Iwata M, Yoshinaga M, Mizutani K, Kikawada T, Kikuta S. Proton gradient mediates hemolymph trehalose influx into aphid bacteriocytes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21971. [PMID: 36205078 DOI: 10.1002/arch.21971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Aphids harbor proteobacterial endosymbionts such as Buchnera aphidicola housed in specialized bacteriocytes derived from host cells. The endosymbiont Buchnera supplies essential amino acids such as arginine to the host cells and, in turn, obtains sugars needed for its survival from the hemolymph. The mechanism of sugar supply in aphid bacteriocytes has been rarely studied. It also remains unclear how Buchnera acquires its carbon source. The hemolymph sugars in Acyrthosiphon pisum are composed of the disaccharide trehalose containing two glucose molecules. Here, we report for the first time that trehalose is transported and used as a potential carbon source by Buchnera across the bacteriocyte plasma membrane via trehalose transporters. The current study characterized the bacteriocyte trehalose transporter Ap_ST11 (LOC100159441) using the Xenopus oocyte expression system. The Ap_ST11 transporter was found to be proton-dependent with a Km value ≥700 mM. We re-examined the hemolymph trehalose at 217.8 mM using a fluorescent trehalose sensor. The bacteriocytes did not obtain trehalose by facilitated diffusion along the gradient across cellular membranes. These findings suggest that trehalose influx into the bacteriocytes depends on the extracellular proton-driven secondary electrochemical transporter.
Collapse
Affiliation(s)
- Mana Iwata
- College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, Japan
| | - Mayu Yoshinaga
- College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, Japan
| | - Kosuke Mizutani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Takahiro Kikawada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shingo Kikuta
- College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, Japan
| |
Collapse
|
9
|
Wang Q, Fang K, Qi L, Wang X, Pan Y, Li Y, Xi J, Zhang J. Purification and Functional Characterization of a Soluble Trehalase in Lissorhoptrus oryzophilus (Coleoptera: Curculionidae). INSECTS 2022; 13:insects13100867. [PMID: 36292815 PMCID: PMC9604388 DOI: 10.3390/insects13100867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 05/16/2023]
Abstract
Trehalase is the only enzyme known for the irreversible splitting of trehalose and plays a major role in insect growth and development. In this report, we describe a basic study of the trehalase gene fragment encoding a soluble trehalase from Lissorhoptrus oryzophilus (LoTRE1). Sequence alignment and phylogenetic analysis suggested that LoTRE1 was similar to some known insect trehalases and belongs to the Coleoptera trehalase group. Additionally, LoTRE1 was expressed mainly in the fat body. Purified protein was obtained using heterologous expression of LoTRE1 in Escherichia coli, and the recombinant protein exhibited the ability to decompose trehalose. Enzyme-substrate docking indicated the potential involvement of other residues in the catalytic activity, in addition to Asp 333. Moreover, feeding of adults on LoTRE1 dsRNA silenced the transcription of LoTRE1 and thereby reduced the activity of trehalase and increased the trehalose content; it also led to a 12% death rate. This study reveals essential molecular features of trehalase and offers insights into the structural aspects of this enzyme, which might be related to its function. Taken together, the findings demonstrate that LoTRE1 is indispensable for adults of this pest and provide a new target for the control of L. oryzophilus.
Collapse
Affiliation(s)
- Qingtai Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Kui Fang
- Technical Center of Kunming Customs, Kunming 650228, China
| | - Lizhong Qi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yunshuo Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.X.); (J.Z.)
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.X.); (J.Z.)
| |
Collapse
|
10
|
Thanvi R, Jayasinghe TD, Kapil S, Obadawo BS, Ronning DR, Sucheck SJ. Synthesis of C7/C8-cyclitols and C7N-aminocyclitols from maltose and X-ray crystal structure of Streptomyces coelicolor GlgEI V279S in a complex with an amylostatin GXG–like derivative. Front Chem 2022; 10:950433. [PMID: 36157042 PMCID: PMC9501709 DOI: 10.3389/fchem.2022.950433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
C7/C8-cyclitols and C7N-aminocyclitols find applications in the pharmaceutical sector as α-glucosidase inhibitors and in the agricultural sector as fungicides and insecticides. In this study, we identified C7/C8-cyclitols and C7N-aminocyclitols as potential inhibitors of Streptomyces coelicolor (Sco) GlgEI-V279S based on the docking scores. The protein and the ligand (targets 11, 12, and 13) were prepared, the states were generated at pH 7.0 ± 2.0, and the ligands were docked into the active sites of the receptor via Glide™. The synthetic route to these targets was similar to our previously reported route used to obtain 4-⍺-glucoside of valienamine (AGV), except the protecting group for target 12 was a p-bromobenzyl (PBB) ether to preserve the alkene upon deprotection. While compounds 11–13 did not inhibit Sco GlgEI-V279S at the concentrations evaluated, an X-ray crystal structure of the Sco GlgE1-V279S/13 complex was solved to a resolution of 2.73 Å. This structure allowed assessment differences and commonality with our previously reported inhibitors and was useful for identifying enzyme–compound interactions that may be important for future inhibitor development. The Asp 394 nucleophile formed a bidentate hydrogen bond interaction with the exocyclic oxygen atoms (C(3)-OH and C(7)-OH) similar to the observed interactions with the Sco GlgEI-V279S in a complex with AGV (PDB:7MGY). In addition, the data suggest replacing the cyclohexyl group with more isosteric and hydrogen bond–donating groups to increase binding interactions in the + 1 binding site.
Collapse
Affiliation(s)
- Radhika Thanvi
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, United States
| | - Thilina D. Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sunayana Kapil
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, United States
| | | | - Donald R. Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Donald R. Ronning, ; Steven J. Sucheck,
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, United States
- *Correspondence: Donald R. Ronning, ; Steven J. Sucheck,
| |
Collapse
|