1
|
Oluwafemi KA, Adeforiti AF, Oyeneyin OE, Olonisakin A, Jimoh RB, Olonisakin DB, Aworetan MI, Adegbehingbe KT, Famobuwa OE. In vitro larvicidal activity of selected azabenzimidazole and diarylquinoline derivatives against Anopheles gambiae and in silico mechanistic analysis. Mol Divers 2025:10.1007/s11030-025-11189-4. [PMID: 40210815 DOI: 10.1007/s11030-025-11189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Different species of mosquitoes are responsible for transmitting infectious diseases such as chikungunya, dengue, Japanese encephalitis, lymphatic filariasis, rift valley fever, west nile fever, yellow fever, zika virus, and malaria. Particularly, malaria infection is endemic in sub-Saharan Africa region, and female anopheles mosquitoes is responsible for the transmission of the parasite causing the infection. The growing resistance of mosquitoes to conventional insecticides and the need to complement existing strategies for the elimination of malaria transmission necessitate the exploration of alternative vector control strategies. In this study, we investigated the in vitro larvicidal potential of three examples of diarylquinoline and two examples of azabenzimidazole derivatives against the fourth instar larvae of Anopheles gambiae. The compounds were also evaluated in silico, specifically targeting odorant-binding proteins (OBPs) of An. gambiae and Culex quinquefasciatus. The larvicidal assay indicated that three of the compounds exhibited significant bioactivity, with LC50 below 20 µg/ml after 48 h. Molecular docking and dynamics simulations further elucidated the binding interactions between the active compounds and the selected OBPs, revealing high binding affinities and stable protein-ligand complexes. These findings suggest that two of the tested compounds have promising potential for optimization into larvicidal agents with OBPs inhibitory potential while complimenting existing mosquito control tools.
Collapse
Affiliation(s)
- Kola A Oluwafemi
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
| | - Anthony F Adeforiti
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Oluwatoba E Oyeneyin
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
| | - Adebisi Olonisakin
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Rashidat B Jimoh
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Deborah B Olonisakin
- Department of Mathematical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Mathias I Aworetan
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | | - Olaniyi E Famobuwa
- Department of Chemistry, Adeyemi Federal University of Education, Ondo, Nigeria
| |
Collapse
|
2
|
Ray B, Roy KK. Deciphering insights into the binding mechanism and plasticity of Telacebec with M. tuberculosis cytochrome bcc-aa3 supercomplex through an unbiased molecular dynamics simulation, free-energy analysis, and DFT study. J Biomol Struct Dyn 2025; 43:2968-2981. [PMID: 38111165 DOI: 10.1080/07391102.2023.2294833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023]
Abstract
The cytochrome bcc-aa3 supercomplex, a key component in the electron transport chain pathway involved in bacterial energy production and homeostasis, is a clinically validated target for tuberculosis (TB), leading to Telacebec (Q203). Telacebec is a potent candidate drug under Phase II clinical development for the treatment of drug-sensitive and drug-resistant TB. Recently, the cryo-electron microscopy structure of this supercomplex from Mycobacterium tuberculosis (Mtb) complexed with Q203 was resolved at 6.9 Å resolution (PDB ID: 7E1W). To understand the binding site (QP site) flexibility and Q203's stability at the QP site of the Mtb cytochrome bcc complex, we conducted molecular dynamics (MD) simulation and free energy analysis on this complex in an explicit hydrated lipid bilayer environment for 500 ns. Through this study, the persistence of a range of direct and indirect interactions was observed over the course of the simulation. The significance of the interactions with His375, Tyr161, Ala178, Ala179, Ile183, His355, Leu356, and Thr313 is underlined. Electrostatic energy was the primary source of the net binding free energy, regardless of the important interacting residues. The overall binding free energy for Q203 was -112.84 ± 7.73 kcal/mol, of which the electrostatic and lipophilic energy contributions were -116.31 ± 1.14 and -21.32 ± 2.35 kcal/mol, respectively. Meanwhile, DFT calculations were utilized to elucidate Q203's molecular properties. Overall, this study deciphers key insights into the cytochrome bcc-aa3 supercomplex with Q203 on the ground of molecular mechanics and quantum mechanics that may facilitate structure-based drug design and optimization for the discovery of the next-generation antitubercular drug(s).
Collapse
Affiliation(s)
- Bedabrata Ray
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, India
| | - Kuldeep K Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Bogomolova AP, Katrukha IA. Troponins and Skeletal Muscle Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2083-2106. [PMID: 39865025 DOI: 10.1134/s0006297924120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine. In this review, we focused on the skeletal troponins that are proteins in the thin filaments of muscle fibers. Skeletal troponins play a key role in regulation of muscle contraction. Biochemical properties of these proteins and their use as biomarkers of skeletal muscle damage are described in this review. One of the most convenient and sensitive methods of protein biomarker measurement in biological liquids is immunochemical analysis; hence, we examined the factors that influence immunochemical detection of skeletal troponins and should be taken into account when developing diagnostic test systems. Also, we reviewed the available data on the skeletal troponin mutations that are considered to be associated with pathologies leading to the development of diseases and discussed utilization of troponins as drug targets for treatment of the skeletal muscle disorders.
Collapse
Affiliation(s)
- Agnessa P Bogomolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Hytest Ltd., Turku, Finland
| | - Ivan A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, Finland
| |
Collapse
|
4
|
Oyeneyin OE, Moodley R, Mashaba C, Garnie LF, Omoboyowa DA, Rakodi GH, Maphoru MV, Balogun MO, Hoppe HC, Egan TJ, Tukulula M. In vitro antiplasmodium and antitrypanosomal activities, β-haematin formation inhibition, molecular docking and DFT computational studies of quinoline-urea-benzothiazole hybrids. Heliyon 2024; 10:e38434. [PMID: 39397937 PMCID: PMC11471183 DOI: 10.1016/j.heliyon.2024.e38434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Quinoline-urea-benzothiazole hybrids exhibited low to sub-micromolar in vitro activities against the Plasmodium falciparum (P. falciparum) 3D7 chloroquine (CQ)-sensitive strain, with compounds 5a, 5b and 5f showing activities ranging from 0.33 to 0.97 μM. Against the formation of β-haematin, the majority of the tested compounds were comparable to the reference drug, chloroquine (CQ), with compounds 5c (IC50 = 9.55 ± 0.62 μM) and 5h (IC50 = 9.73 ± 1.38 μM), exhibiting slightly better in vitro efficacy than CQ. The hybrids also exhibited low micromolar to submicromolar activities against Trypanosoma brucei brucei, with 5j-5k being comparable to the reference drug, pentamidine. Compound 5b displayed higher in silico binding energy than CQ when docked against P. falciparum dihydroorotate dehydrogenase enzyme. Compounds 5j and 5k showed higher binding energies than pentamidine within the trypanothione reductase enzyme binding pocket. The root means square deviations of the hit compounds 5b, 5j and 5k were stable throughout the 100 ns simulation period. Post-molecular dynamics MMGBSA binding free energies showed that the selected hybrids bind spontaneously to the respective enzymes. The DFT investigation revealed that the compounds have regions that can bind to the electropositive and electronegative sites of the proteins.
Collapse
Affiliation(s)
- Oluwatoba E. Oyeneyin
- School of Chemistry and Physics, University of KwaZulu Natal, Westville Campus, Durban, 4000, South Africa
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Rashmika Moodley
- School of Chemistry and Physics, University of KwaZulu Natal, Westville Campus, Durban, 4000, South Africa
| | - Chakes Mashaba
- School of Chemistry and Physics, University of KwaZulu Natal, Westville Campus, Durban, 4000, South Africa
| | - Larnelle F. Garnie
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Damilola A. Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Goitsemodimo H. Rakodi
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, 001, South Africa
| | - Mabuatsela V. Maphoru
- Department of Chemistry, Faculty of Science, Tshwane University of Technology, Pretoria, 001, South Africa
| | - Mohamed O. Balogun
- Bio-Polymer Modification and Therapeutics Laboratory, Council for Scientific and Industrial Research (CSIR), Pretoria, 0001, South Africa
| | - Heinrich C. Hoppe
- Centre for Chemico- and Biomedical Research, Rhodes University, Makhanda, 6140, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda, 6140, South Africa
| | - Timothy J. Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| | - Matshawandile Tukulula
- School of Chemistry and Physics, University of KwaZulu Natal, Westville Campus, Durban, 4000, South Africa
| |
Collapse
|
5
|
Roney M, Issahaku AR, Tufail N, Wilhelm A, Aluwi MFFM. Computational Screening of FDA‐Approved Hepatitis C Drugs for Inhibition of VEGFR2 in Liver Cancer. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202402683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 01/05/2025]
Abstract
AbstractLiver cancer (LC) is one of the most common tumours and the leading cause of cancer‐related death globally. Amidst the problems associated with existing treatments, such as hepatotoxicity, recurrence, drug resistance, and other adverse effects, researchers are under pressure to find alternatives. Towards a comprehensive rationalisation of the search for new anti‐LC drugs among approved ones, we employed an in‐silico approach to accelerate the selection of the most efficacious LC drugs. The FDA‐approved hepatitis C virus (HCV) drugs were docked with the LC protein using the AutoDock Vina software. Compared to the control compound, two FDA‐approved HCV drugs (DB09102 and DB09027) were selected based on their binding energies and interactions with the target protein, which showed comparable binding energies. Furthermore, these compounds were then subjected to molecular dynamic simulation, principle component analysis, and MMGBSA using the AMBER20 software, and the results showed stable complexes compared to the control complex. All things considered, this study will help the scientific community and society find a novel drug to treat LC.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Al-Sultan Abdullah Lebuhraya Persiaran Tun Khalil Yaakob Kuantan, Pahang Malaysia
- Centre for Bio-aromatic Research Universiti Malaysia Pahang Al-Sultan Abdullah Lebuhraya Persiaran Tun Khalil Yaakob Kuantan, Pahang Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry University of the Free State 205 Nelson Mandela Avenue 9301 Bloemfontein South Africa
| | - Nasir Tufail
- C.M.P. Degree College University of Allahabad 211002 Uttar Pradesh India
| | - Anke Wilhelm
- Department of Chemistry University of the Free State 205 Nelson Mandela Avenue 9301 Bloemfontein South Africa
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Al-Sultan Abdullah Lebuhraya Persiaran Tun Khalil Yaakob Kuantan, Pahang Malaysia
- Centre for Bio-aromatic Research Universiti Malaysia Pahang Al-Sultan Abdullah Lebuhraya Persiaran Tun Khalil Yaakob Kuantan, Pahang Malaysia
| |
Collapse
|