1
|
Ballauff M. Denaturation of proteins: electrostatic effects vs. hydration. RSC Adv 2022; 12:10105-10113. [PMID: 35424951 PMCID: PMC8968186 DOI: 10.1039/d2ra01167k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The unfolding transition of proteins in aqueous solution containing various salts or uncharged solutes is a classical subject of biophysics. In many cases, this transition is a well-defined two-stage equilibrium process which can be described by a free energy of transition ΔG u and a transition temperature T m. For a long time, it has been known that solutes can change T m profoundly. Here we present a phenomenological model that describes the change of T m with the solute concentration c s in terms of two effects: (i) the change of the number of correlated counterions Δn ci and (ii) the change of hydration expressed through the parameter Δw and its dependence on temperature expressed through the parameter dΔc p/dc s. Proteins always carry charges and Δn ci describes the uptake or release of counterions during the transition. Likewise, the parameter Δw measures the uptake or release of water during the transition. The transition takes place in a reservoir with a given salt concentration c s that defines also the activity of water. The parameter Δn ci is a measure for the gain or loss of free energy because of the release or uptake of ions and is related to purely entropic effects that scale with ln c s. Δw describes the effect on ΔG u through the loss or uptake of water molecules and contains enthalpic as well as entropic effects that scale with c s. It is related to the enthalpy of transition ΔH u through a Maxwell relation: the dependence of ΔH u on c s is proportional to the dependence of Δw on temperature. While ionic effects embodied in Δn ci are independent of the kind of salt, the hydration effects described through Δw are directly related to Hofmeister effects of the various salt ions. A comparison with literature data underscores the general validity of the model.
Collapse
Affiliation(s)
- Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
2
|
Fatkhutdinova A, Mukhametzyanov T, Schick C. Refolding of Lysozyme in Glycerol as Studied by Fast Scanning Calorimetry. Int J Mol Sci 2022; 23:2773. [PMID: 35269914 PMCID: PMC8911483 DOI: 10.3390/ijms23052773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
The folding of lysozyme in glycerol was monitored by the fast scanning calorimetry technique. Application of a temperature-time profile with an isothermal segment for refolding allowed assessment of the state of the non-equilibrium protein ensemble and gave information on the kinetics of folding. We found that the non-equilibrium protein ensemble mainly contains a mixture of unfolded and folded protein forms and partially folded intermediates, and enthalpic barriers control the kinetics of the process. Lysozyme folding in glycerol follows the same or similar triangular mechanism described in the literature for folding in water. The unfolding enthalpy of the intermediate must be no lower than 70% of the folded form, while the activation barrier for the unfolding of the intermediate (ca. 140 kJ/mol) is about 100 kJ/mol lower than that of the folded form (ca. 240-260 kJ/mol).
Collapse
Affiliation(s)
- Alisa Fatkhutdinova
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Timur Mukhametzyanov
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Christoph Schick
- A.M.Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Institute of Physics and Competence Centre CALOR, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany
| |
Collapse
|
3
|
Laity PR, Holland C. Seeking Solvation: Exploring the Role of Protein Hydration in Silk Gelation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020551. [PMID: 35056868 PMCID: PMC8781151 DOI: 10.3390/molecules27020551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
The mechanism by which arthropods (e.g., spiders and many insects) can produce silk fibres from an aqueous protein (fibroin) solution has remained elusive, despite much scientific investigation. In this work, we used several techniques to explore the role of a hydration shell bound to the fibroin in native silk feedstock (NSF) from Bombyx mori silkworms. Small angle X-ray and dynamic light scattering (SAXS and DLS) revealed a coil size (radius of gyration or hydrodynamic radius) around 12 nm, providing considerable scope for hydration. Aggregation in dilute aqueous solution was observed above 65 °C, matching the gelation temperature of more concentrated solutions and suggesting that the strength of interaction with the solvent (i.e., water) was the dominant factor. Infrared (IR) spectroscopy indicated decreasing hydration as the temperature was raised, with similar changes in hydration following gelation by freezing or heating. It was found that the solubility of fibroin in water or aqueous salt solutions could be described well by a relatively simple thermodynamic model for the stability of the protein hydration shell, which suggests that the affected water is enthalpically favoured but entropically penalised, due to its reduced (vibrational or translational) dynamics. Moreover, while the majority of this investigation used fibroin from B. mori, comparisons with published work on silk proteins from other silkworms and spiders, globular proteins and peptide model systems suggest that our findings may be of much wider significance.
Collapse
|
4
|
Walkowiak JJ, Ballauff M, Zimmermann R, Freudenberg U, Werner C. Thermodynamic Analysis of the Interaction of Heparin with Lysozyme. Biomacromolecules 2020; 21:4615-4625. [DOI: 10.1021/acs.biomac.0c00780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jacek Janusz Walkowiak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center for Biomaterials Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
5
|
An insight on type I collagen from horse tendon for the manufacture of implantable devices. Int J Biol Macromol 2020; 154:291-306. [DOI: 10.1016/j.ijbiomac.2020.03.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
|
6
|
Tyunina EY, Badelin VG, Kuritsyna AA. Molecular Interactions of L-Histidine in an Aqueous Buffer Solution in the Temperature Range of 288–313 K. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420040226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Walkowiak J, Lu Y, Gradzielski M, Zauscher S, Ballauff M. Thermodynamic Analysis of the Uptake of a Protein in a Spherical Polyelectrolyte Brush. Macromol Rapid Commun 2019; 41:e1900421. [DOI: 10.1002/marc.201900421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jacek Walkowiak
- Institut für Chemie und BiochemieFreie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Yan Lu
- Soft Matter and Functional MaterialsHelmholtz‐Zentrum Berlin für Materialen und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
- Institute of ChemistryUniversity of Potsdam 14467 Potsdam Germany
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische ChemieInstitut für ChemieStraße des 17. Juni 124Sekr. TC7Technische Universität Berlin D‐10623 Berlin Germany
| | - Stefan Zauscher
- Mechanical Engineering and Material ScienceDuke University Durham NC 27708 USA
| | - Matthias Ballauff
- Soft Matter and Functional MaterialsHelmholtz‐Zentrum Berlin für Materialen und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
| |
Collapse
|
8
|
Yang B, Zhang XD, Li J, Tian J, Wu YP, Yu FX, Wang R, Wang H, Zhang DW, Liu Y, Zhou L, Li ZT. In Situ Loading and Delivery of Short Single- and Double-Stranded DNA by Supramolecular Organic Frameworks. CCS CHEMISTRY 2019. [DOI: 10.31635/ccschem.019.20180011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Short DNA represents an important class of biomacromolecules that are widely applied in gene therapy, editing, and modulation. However, the development of simple and reliable methods for their intracellular delivery remains a challenge. Herein, we describe that seven water-soluble, homogeneous supramolecular organic frameworks (SOFs) with a well-defined pore size and high stability in water that can accomplish in situ inclusion of single-stranded (ss) and double-stranded (ds) DNA (21, 23, and 58 nt) and effective intracellular delivery (including two noncancerous and six cancerous cell lines). Fluorescence quenching experiments for single and double end-labeled ss- and ds-DNA support that the DNA sequences can be completely enveloped by the SOFs. Confocal laser scanning microscopy and flow cytometry reveal that five of the SOFs exhibit excellent delivery efficiencies that, in most of the studied cases, outperform the commercial standard Lipo2000, even at low SOF–nucleic acid ratios. In addition to high delivery efficiencies, the water-soluble, self-assembled SOF carriers have a variety of advantages, including convenient preparation, high stability, and in situ DNA inclusion, which are all critical for practical applications in nucleic acid delivery.
Collapse
|
9
|
Thermodynamics of protein folding: methodology, data analysis and interpretation of data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:305-316. [DOI: 10.1007/s00249-019-01362-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 01/17/2023]
|
10
|
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 2019; 18:24. [PMID: 30885217 PMCID: PMC6423854 DOI: 10.1186/s12938-019-0647-0] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Collagen, the most abundant extracellular matrix protein in animal kingdom belongs to a family of fibrous proteins, which transfer load in tissues and which provide a highly biocompatible environment for cells. This high biocompatibility makes collagen a perfect biomaterial for implantable medical products and scaffolds for in vitro testing systems. To manufacture collagen based solutions, porous sponges, membranes and threads for surgical and dental purposes or cell culture matrices, collagen rich tissues as skin and tendon of mammals are intensively processed by physical and chemical means. Other tissues such as pericardium and intestine are more gently decellularized while maintaining their complex collagenous architectures. Tissue processing technologies are organized as a series of steps, which are combined in different ways to manufacture structurally versatile materials with varying properties in strength, stability against temperature and enzymatic degradation and cellular response. Complex structures are achieved by combined technologies. Different drying techniques are performed with sterilisation steps and the preparation of porous structures simultaneously. Chemical crosslinking is combined with casting steps as spinning, moulding or additive manufacturing techniques. Important progress is expected by using collagen based bio-inks, which can be formed into 3D structures and combined with live cells. This review will give an overview of the technological principles of processing collagen rich tissues down to collagen hydrolysates and the methods to rebuild differently shaped products. The effects of the processing steps on the final materials properties are discussed especially with regard to the thermal and the physical properties and the susceptibility to enzymatic degradation. These properties are key features for biological and clinical application, handling and metabolization.
Collapse
Affiliation(s)
- Michael Meyer
- Research Institute for Leather and Plastic Sheeting, Meissner Ring 1-5, 09599, Freiberg, Germany.
| |
Collapse
|
11
|
Wu J, Liao W, Zhang J, Chen W. Thermal behavior of collagen crosslinked with tannic acid under microwave heating. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2019; 135:2329-2335. [DOI: 10.1007/s10973-018-7341-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/26/2018] [Indexed: 01/07/2025]
|
12
|
DSC investigation of bovine hide collagen at varying degrees of crosslinking and humidities. Int J Biol Macromol 2017; 103:120-128. [DOI: 10.1016/j.ijbiomac.2017.04.124] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 11/18/2022]
|
13
|
Harkness RW, Mittermaier AK. G-quadruplex dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28642152 DOI: 10.1016/j.bbapap.2017.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G-quadruplexes (GQs) are four-stranded nucleic acid secondary structures formed by guanosine (G)-rich DNA and RNA sequences. It is becoming increasingly clear that cellular processes including gene expression and mRNA translation are regulated by GQs. GQ structures have been extensively characterized, however little attention to date has been paid to their conformational dynamics, despite the fact that many biological GQ sequences populate multiple structures of similar free energies, leading to an ensemble of exchanging conformations. The impact of these dynamics on biological function is currently not well understood. Recently, structural dynamics have been demonstrated to entropically stabilize GQ ensembles, potentially modulating gene expression. Transient, low-populated states in GQ ensembles may additionally regulate nucleic acid interactions and function. This review will underscore the interplay of GQ dynamics and biological function, focusing on several dynamic processes for biological GQs and the characterization of GQ dynamics by nuclear magnetic resonance (NMR) spectroscopy in conjunction with other biophysical techniques. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Robert W Harkness
- McGill University Department of Chemistry, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada
| | - Anthony K Mittermaier
- McGill University Department of Chemistry, 801 Sherbrooke St. W., Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
14
|
Bharmoria P, Kumar A. Thermodynamic investigations of protein's behaviour with ionic liquids in aqueous medium studied by isothermal titration calorimetry. Biochim Biophys Acta Gen Subj 2016; 1860:1017-1025. [DOI: 10.1016/j.bbagen.2015.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/19/2015] [Accepted: 08/30/2015] [Indexed: 11/30/2022]
|
15
|
Broom HR, Vassall KA, Rumfeldt JAO, Doyle CM, Tong MS, Bonner JM, Meiering EM. Combined Isothermal Titration and Differential Scanning Calorimetry Define Three-State Thermodynamics of fALS-Associated Mutant Apo SOD1 Dimers and an Increased Population of Folded Monomer. Biochemistry 2016; 55:519-33. [PMID: 26710831 DOI: 10.1021/acs.biochem.5b01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many proteins are naturally homooligomers, homodimers most frequently. The overall stability of oligomeric proteins may be described in terms of the stability of the constituent monomers and the stability of their association; together, these stabilities determine the populations of different monomer and associated species, which generally have different roles in the function or dysfunction of the protein. Here we show how a new combined calorimetry approach, using isothermal titration calorimetry to define monomer association energetics together with differential scanning calorimetry to measure total energetics of oligomer unfolding, can be used to analyze homodimeric unmetalated (apo) superoxide dismutase (SOD1) and determine the effects on the stability of structurally diverse mutations associated with amyotrophic lateral sclerosis (ALS). Despite being located throughout the protein, all mutations studied weaken the dimer interface, while concomitantly either decreasing or increasing the marginal stability of the monomer. Analysis of the populations of dimer, monomer, and unfolded monomer under physiological conditions of temperature, pH, and protein concentration shows that all mutations promote the formation of folded monomers. These findings may help rationalize the key roles proposed for monomer forms of SOD1 in neurotoxic aggregation in ALS, as well as roles for other forms of SOD1. Thus, the results obtained here provide a valuable approach for the quantitative analysis of homooligomeric protein stabilities, which can be used to elucidate the natural and aberrant roles of different forms of these proteins and to improve methods for predicting protein stabilities.
Collapse
Affiliation(s)
- Helen R Broom
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Kenrick A Vassall
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Jessica A O Rumfeldt
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Ming Sze Tong
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Julia M Bonner
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|