1
|
Angkawijaya AE, Bundjaja V, Santoso SP, Go AW, Lin SP, Cheng KC, Soetaredjo FE, Ismadji S. Biocompatible and biodegradable copper-protocatechuic metal-organic frameworks as rifampicin carrier. BIOMATERIALS ADVANCES 2023; 146:213269. [PMID: 36696782 DOI: 10.1016/j.bioadv.2022.213269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a disease caused by the M. tuberculosis bacteria infection and is listed as one of the deadliest diseases to date. Despite the development of antituberculosis drugs, the need for long-term drug consumption and low patient commitment are obstacles to the success of TB treatment. A continuous drug delivery system that has a long-term effect is needed to reduce routine drug consumption intervals, suppress infection, and prevent the emergence of drug-resistant strains of M. tuberculosis. For this reason, biomolecule metal-organic framework (BioMOF) with good biocompatibility, nontoxicity, bioactivity, and high stability are becoming potential drug carriers. This study used a bioactive protocatechuic acid (PCA) as organic linker to prepare copper-based BioMOF Cu-PCA under base-modulated conditions. Detailed crystal analysis by the powder X-ray diffraction demonstrated that the Cu-PCA, with a chemical formula of C14H16O13Cu3, crystalizes as triclinic in space group P1. Comprehensive physicochemical characterizations were provided using FTIR, SEM, XPS, TGA, EA, and N2 sorption. As a drug carrier, Cu-PCA showed a high maximum rifampicin (RIF) drug loading of 443.01 mg/g. Upon resuspension in PBS, the RIF and linkers release profile exhibited two-stage release kinetic profiles, which are well described by the Biphasic Dose Response (BiDoseResp) model. A complete release of these compounds (RIF and PCA) was achieved after ~9 h of mixing in PBS. Cu-PCA and RIF@Cu-PCA possessed antibacterial activity against Escherichia coli, and good biocompatibility is evidenced by the high viability of MH-S mice alveolar macrophage cells upon supplementations.
Collapse
Affiliation(s)
- Artik Elisa Angkawijaya
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106-07, Taiwan.
| | - Vania Bundjaja
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shella Permatasari Santoso
- Chemical Engineering Department, Widya Mandala Catholic University Surabaya, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Alchris Woo Go
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, #250, Wuxing Street, Xinyi Dist., Taipei 11042, Taiwan
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Felycia Edi Soetaredjo
- Chemical Engineering Department, Widya Mandala Catholic University Surabaya, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Suryadi Ismadji
- Chemical Engineering Department, Widya Mandala Catholic University Surabaya, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| |
Collapse
|
2
|
Caterino S, Pajer N, Crestini C. Iron-galls inks: preparation, structure and characterisation. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Fazary AE, Awwad NS, Ibrahium HA, Shati AA, Alfaifi MY, Ju YH. Protonation Equilibria of N-Acetylcysteine. ACS OMEGA 2020; 5:19598-19605. [PMID: 32803054 PMCID: PMC7424727 DOI: 10.1021/acsomega.0c02080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/20/2020] [Indexed: 05/14/2023]
Abstract
The acid base protonation equilibria of N-acetylcysteine (Nac) and its equilibrium constants in water solutions were determined by the Hyperquad 2008 software assessment from the pH potentiometry data, which provides a diversity of statistics presentations. The effect of a number of organic solvents on the acid base protonation processes was also examined. The solution equilibria of N-acetylcysteine (Nac) were studied at T = 298.15 K in water (w 1) + organic liquid mixtures [100 w 2 = 0, 20, 40, 60, and 80%] with an ionic strength of I = 0.16 mol·dm-3 NaNO3. Also, the organic solvent's influence was studied based on the Kamlet-Taft linear solvation energy relationship. The experimental results were compared with theoretical ones obtained via the Gaussian 09 calculation computer program. The protonation equilibria of Nac were found to be important in the progress of separation systems in aqueous and non-aqueous ionic solutions. Nac showed a likely good metal dibasic chelating bioligand as the DFT calculations proved two binding sites. Spectrophotometry evaluation was also done for N-acetylcysteine bioligands at various pH values in water solutions then its absorbance ratio was measured.
Collapse
Affiliation(s)
- Ahmed E. Fazary
- Applied
Research Department, Research and Development Sector, Egyptian Organization for Biological Products and Vaccines (VACSERA
Holding Company), 51
Wezaret El-Zeraa St., Agouza, Giza 22311, Egypt
- . Phone: +2-106-358-2851
| | - Nasser S. Awwad
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology
Department, Faculty of Science, King Khalid
University, Abha 9004, Kingdom of Saudi Arabia
- Department
of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo 11381, Egypt
| | - Ali A. Shati
- Department
of Biology, Faculty of Science, King Khalid
University, Abha 9004, Kingdom of Saudi Arabia
| | - Mohammad Y. Alfaifi
- Department
of Biology, Faculty of Science, King Khalid
University, Abha 9004, Kingdom of Saudi Arabia
| | - Yi-Hsu Ju
- Graduate
Institute of Applied Science and Technology, Department of Chemical
Engineering, Taiwan Building Technology Center, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
| |
Collapse
|
4
|
Zeng Y, Sun YX, Meng XH, Yu T, Zhu HT, Zhang YJ. A new methylene bisflavan-3-ol from the branches and leaves of Potentilla fruticosa. Nat Prod Res 2019; 34:1238-1245. [PMID: 30663382 DOI: 10.1080/14786419.2018.1557169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yang Zeng
- College of Life Science, Qinghai Normal University, Xining, China
| | - Yu-Xia Sun
- College of Life Science, Qinghai Normal University, Xining, China
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiu-Hua Meng
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tao Yu
- College of Life Science, Qinghai Normal University, Xining, China
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
5
|
Santoso SP, Laysandra L, Putro JN, Lie J, Soetaredjo FE, Ismadji S, Ayucitra A, Ju YH. Preparation of nanocrystalline cellulose-montmorillonite composite via thermal radiation for liquid-phase adsorption. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.02.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|