1
|
Hybrid organic-inorganic materials on the basis of acrylic monomers and TEOS prepared by simultaneous UV-curing and sol-gel process. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02057-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Investigation of proton conductivity of inorganic–organic hybrid membranes based on boronic acid and tetrazole. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0526-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Zheng T, Ren S, Zhou Q, Li Q, Zhang L, Li H, Lin Y. Synthesis and ionic conductivity of a novel ionic liquid polymer electrolyte. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0361-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
An Investigation of Proton Conductivity of Vinyltriazole-Grafted PVDF Proton Exchange Membranes Prepared via Photoinduced Grafting. J CHEM-NY 2014. [DOI: 10.1155/2014/963131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proton exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for clean and efficient power generation in the twenty-first century. In this study, high performance of poly(vinylidene fluoride) (PVDF) and proton conductivity of poly(1-vinyl-1,2,4-triazole) (PVTri) were combined in a graft copolymer, PVDF-g-PVTri, by the polymerization of 1-vinyl-1,2,4-triazole on a PVDF based matrix under UV light in one step. The polymers were doped with triflic acid (TA) at different stoichiometric ratios with respect to triazole units and the anhydrous polymer electrolyte membranes were prepared. All samples were characterized by FTIR and1H-NMR spectroscopies. Their thermal properties were examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA demonstrated that the PVDF-g-PVTri and PVDF-g-PVTri-(TA)x membranes were thermally stable up to 390°C and 330°C, respectively. NMR and energy dispersive X-ray spectroscopy (EDS) results demonstrated that PVDF-g-PVTri was successfully synthesized with a degree of grafting of 21%. PVDF-g-PVTri-(TA)3showed a maximum proton conductivity of6×10-3 Scm−1at 150°C and anhydrous conditions. CV study illustrated that electrochemical stability domain for PVDF-g-PVTri-(TA)3extended over 4.0 V.
Collapse
|
5
|
Synthesis and characterization of 1H-1,2,4-triazole functional polymer electrolyte membranes (PEMs) based on PVDF and 4-(chloromethyl)styrene via photoinduced grafting. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0313-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|