1
|
Yang T, He S, Liu P, Yan J, Lu R, Xue Y. Chain heterogeneity of poly(lactic acid) and its influence on crystallization kinetics. Int J Biol Macromol 2024; 277:134101. [PMID: 39048000 DOI: 10.1016/j.ijbiomac.2024.134101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Temperature rising elution fractionation (TREF) approach was used to separate a biodegradable poly(lactic acid) (PLA) resin into ten fractions and completely establish the relationship between chain microstructure and properties. The main fractions were mainly eluted at 100, 110, 114, and 118 °C, and their mass percentages were 7.98 wt%, 44.83 wt%, 19.64 wt%, and 11.90 wt%, respectively. Through the use of successive self-nucleation/annealing (SSA) thermal fractionation, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and 13C-nuclear magnetic resonance spectroscopy (13C NMR), the intermolecular and intramolecular differences of PLA were further explored. Fractions eluted at 90, 110, 118, and 126 °C were also chosen to research the non-isothermal cold crystallization kinetics, and fractions eluted at 110, 118, and 126 °C were chosen to explore the non-isothermal crystallization kinetics in order to simulate the real process. The findings demonstrated that the Liu-Mo approach were more suited the non-isothermal crystallization and non-isothermal cold crystallization kinetics of PLA. As the elution temperature increased, so did the stereoregularity of the fractions, the crystallization rate, the crystallization capacity, and the lamellar thickness. These will lay a foundation for its basic research and industrial application.
Collapse
Affiliation(s)
- Tao Yang
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuang He
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Peng Liu
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingyao Yan
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ruiyao Lu
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yanhu Xue
- College of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin 300457, PR China; Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
de França JOC, Lima QDS, Barbosa MMDM, Fonseca ALF, Machado GDF, Dias SCL, Dias JA. Sonochemical Synthesis of Magnetite/Poly(lactic acid) Nanocomposites. Polymers (Basel) 2023; 15:4662. [PMID: 38139914 PMCID: PMC10747535 DOI: 10.3390/polym15244662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Nanocomposites based on poly(lactic acid) (PLA) and magnetite nanoparticles (MNP-Fe3O4) show promise for applications in biomedical treatments. One key challenge is to improve the stabilization and dispersion of MNP-Fe3O4. To address this, we synthesized MNP-Fe3O4/PLA nanocomposites using ultrasound mediation and a single iron(II) precursor, eliminating the need for surfactants or organic solvents, and conducted the process under ambient conditions. The resulting materials, containing 18 and 33 wt.% Fe3O4, exhibited unique thermal behavior characterized by two mass losses: one at a lower degradation temperature (Td) and another at a higher Td compared to pure PLA. This suggests that the interaction between PLA and MNP-Fe3O4 occurs through hydrogen bonds, enhancing the thermal stability of a portion of the polymer. Fourier Transform Infrared (FT-IR) analysis supported this finding, revealing shifts in bands related to the terminal -OH groups of the polymer and the Fe-O bonds, thereby confirming the interaction between the groups. Raman spectroscopy demonstrated that the PLA serves as a protective layer against the oxidation of MNP-Fe3O4 in the 18% MNP-Fe3O4/PLA nanocomposite when exposed to a high-power laser (90 mW). Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) analyses confirmed that the synthetic procedure yields materials with dispersed nanoparticles within the PLA matrix without the need for additional reactants.
Collapse
Affiliation(s)
- Juliene Oliveira Campos de França
- Laboratory of Catalysis, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro–Asa Norte, Brasília 70910-900, DF, Brazil; (J.O.C.d.F.); (Q.d.S.L.); (M.M.d.M.B.); (A.L.F.F.); (G.d.F.M.); (S.C.L.D.)
| | | | | | | | | | | | - José Alves Dias
- Laboratory of Catalysis, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro–Asa Norte, Brasília 70910-900, DF, Brazil; (J.O.C.d.F.); (Q.d.S.L.); (M.M.d.M.B.); (A.L.F.F.); (G.d.F.M.); (S.C.L.D.)
| |
Collapse
|
3
|
Bendrea AD, Cianga L, Göen Colak D, Constantinescu D, Cianga I. Thiophene End-Functionalized Oligo-(D,L-Lactide) as a New Electroactive Macromonomer for the "Hairy-Rod" Type Conjugated Polymers Synthesis. Polymers (Basel) 2023; 15:polym15051094. [PMID: 36904339 PMCID: PMC10006927 DOI: 10.3390/polym15051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The development of the modern society imposes a fast-growing demand for new advanced functional polymer materials. To this aim, one of the most plausible current methodologies is the end-group functionalization of existing conventional polymers. If the end functional group is able to polymerize, this method enables the synthesis of a molecularly complex, grafted architecture that opens the access to a wider range of material properties, as well as tailoring the special functions required for certain applications. In this context, the present paper reports on α-thienyl-ω-hydroxyl-end-groups functionalized oligo-(D,L-lactide) (Th-PDLLA), which was designed to combine the polymerizability and photophysical properties of thiophene with the biocompatibility and biodegradability of poly-(D,L-lactide). Th-PDLLA was synthesized using the path of "functional initiator" in the ring-opening polymerization (ROP) of (D,L)-lactide, assisted by stannous 2-ethyl hexanoate (Sn(oct)2). The results of NMR and FT-IR spectroscopic methods confirmed the Th-PDLLA's expected structure, while the oligomeric nature of Th-PDLLA, as resulting from the calculations based on 1H-NMR data, is supported by the findings from gel permeation chromatography (GPC) and by the results of the thermal analyses. The behavior of Th-PDLLA in different organic solvents, evaluated by UV-vis and fluorescence spectroscopy, but also by dynamic light scattering (DLS), suggested the presence of colloidal supramolecular structures, underlining the nature of the macromonomer Th-PDLLA as an "shape amphiphile". To test its functionality, the ability of Th-PDLLA to work as a building block for the synthesis of molecular composites was demonstrated by photoinduced oxidative homopolymerization in the presence of diphenyliodonium salt (DPI). The occurrence of a polymerization process, with the formation of a thiophene-conjugated oligomeric main chain grafted with oligomeric PDLLA, was proven, in addition to the visual changes, by the results of GPC, 1H-NMR, FT-IR, UV-vis and fluorescence measurements.
Collapse
Affiliation(s)
- Anca-Dana Bendrea
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
| | - Luminita Cianga
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
- Correspondence: (L.C.); (I.C.); Tel.: +40-332-880-220 (L.C. & I.C.)
| | - Demet Göen Colak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
| | | | - Ioan Cianga
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
- Correspondence: (L.C.); (I.C.); Tel.: +40-332-880-220 (L.C. & I.C.)
| |
Collapse
|
4
|
Meng X, Qi Z, Yu L, Zhang Y. Catalytic System for Poly(lactic acid) Synthesis: Opportunities and Challenges. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers (Basel) 2022; 14:4755. [PMID: 36365747 PMCID: PMC9656617 DOI: 10.3390/polym14214755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| | | | | | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| |
Collapse
|
6
|
Green Catalysts in the Synthesis of Biopolymers and Biomaterials. ChemistrySelect 2022. [DOI: 10.1002/slct.202201276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
de França JOC, da Silva Valadares D, Paiva MF, Dias SCL, Dias JA. Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers (Basel) 2022; 14:polym14122317. [PMID: 35745893 PMCID: PMC9229942 DOI: 10.3390/polym14122317] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Poly(lactic acid) (PLA) is an important polymer that is based on renewable biomass resources. Because of environmental issues, more renewable sources for polymers synthesis have been sought for industrial purposes. In this sense, cheaper monomers should be used to facilitate better utilization of less valuable chemicals and therefore granting more sustainable processes. Some points are raised about the need to study the total degradability of any PLA, which may require specific composting conditions (e.g., temperature, type of microorganism, adequate humidity and aerobic environment). Polymerization processes to produce PLA are presented with an emphasis on D,L-lactic acid (or rac-lactide) as the reactant monomer. The syntheses involving homogeneous and heterogeneous catalytic processes to produce poly(D,L-Lactic acid) (PDLLA) are also addressed. Additionally, the production of blends, copolymers, and composites with PDLLA are also presented exemplifying different preparation methods. Some general applications of these materials mostly dedicated to the biomedical area over the last 10–15 years will be pointed out.
Collapse
Affiliation(s)
| | | | | | | | - José Alves Dias
- Correspondence: (S.C.L.D.); (J.A.D.); Tel.: +55-61-3107-3846 (J.A.D.); Fax: 55-61-3107-3900 (J.A.D.)
| |
Collapse
|
8
|
Fang H, Zhang L, Chen A, Wu F. Improvement of Mechanical Property for PLA/TPU Blend by Adding PLA-TPU Copolymers Prepared via In Situ Ring-Opening Polymerization. Polymers (Basel) 2022; 14:polym14081530. [PMID: 35458279 PMCID: PMC9031752 DOI: 10.3390/polym14081530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Polylactic acid (PLA)-thermoplastic polyurethane (TPU) copolymer (PTC) was prepared by melting TPU pellets in molten lactide, followed by in situ ring-opening coordination polymerization. The results from FTIR and 1H-NMR confirmed the formation of the copolymer. PLA/TPU blends with different TPU contents were prepared by melt blending method. SEM and mechanical properties showed a conspicuous phase separation between PLA and TPU. In order to further improve the mechanical properties of the blend, PTC was used as the compatibilizer and the effects of the PTC content on the properties of the blend were investigated. The addition of PTC made TPU particles smaller in PLA matrix and improved the compatibility. With the loading of 5 wt.% PTC, the impact strength of the PLA/TPU blend reached 27.8 kJ/m2, which was 31.1% and 68.5% higher than that of the blend without PTC and pure PLA, respectively. As the content of PTC was more than 5 wt.%, the mechanical properties declined since the compatibilizer tended to form separate clusters, which could reduce the part distributed between the dispersed phase and the matrix, leading to a reduction in the compatibility of the blend. Moreover, the DMA results confirmed PTC could improve the compatibility between PLA and TPU.
Collapse
Affiliation(s)
- Hui Fang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350011, China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou 350011, China
| | - Lingjie Zhang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
| | - Anlin Chen
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
| | - Fangjuan Wu
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China; (H.F.); (L.Z.); (A.C.)
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350011, China
- Correspondence:
| |
Collapse
|
9
|
Investigation of long-term ageing effect on the thermal properties of chicken feather fibre/poly(lactic acid) biocomposites. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02132-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Chafran LS, Paiva MF, Freitas JOC, Sales MJA, Dias SCL, Dias JA. Preparation of PLA blends by polycondensation of D,L-lactic acid using supported 12-tungstophosphoric acid as a heterogeneous catalyst. Heliyon 2019; 5:e01810. [PMID: 31193779 PMCID: PMC6539807 DOI: 10.1016/j.heliyon.2019.e01810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/19/2019] [Accepted: 05/21/2019] [Indexed: 12/01/2022] Open
Abstract
Poly(lactic acid) (PLA) is a significant polymer that is based on renewable biomass resources. The production of PLA by polycondensation using heterogeneous catalysis is a focus for sustainable and economical processes. A series of samples comprising 12-tungstophosphoric acid (H3PW) supported on activated carbon, silica, and alumina induced the catalytic polymerization of D,L-lactic acid to form blends of PLA. The catalysts were characterized by multiple techniques to confirm the integrity of the Keggin anion as well as the acidity, which is the key property for relating structure to activity. The best reaction conditions were established for H3PW/C and tested for the other supported catalysts. The obtained polymer was a blend that was characterized as an enantiomeric excess (ee) of as much as 95% L-PLA (PLLA) with a mass average molar mass (M w ) of approximately 14,900 daltons. The role of H3PW in these polymerizations was demonstrated, i.e., without the Keggin acid, only oligomeric units (M w < 10,000 daltons) could be obtained. Additionally, inverse relationships between the M w of PLA and the enthalpy (-ΔH) of the strongest sites of the catalysts were distinguished, i.e., PLAMw-H3PW/C > PLAMw-H3PW/Al2O3 > PLAMw-H3PW/SiO2, whereas the acidity (-ΔH) order was as follows: H3PW/SiO2 > H3PW/Al2O3 > H3PW/C. These findings could be attributed to the correct tuning of strength and the accessibility of the sites to produce longer polymeric chains.
Collapse
Affiliation(s)
- Liana S Chafran
- Universidade de Brasília, Campus Darcy Ribeiro - Asa Norte, Instituto de Química, Laboratório de Catálise (A1-62/21), Brasília-DF, 70910-900, Brazil
| | - Mateus F Paiva
- Universidade de Brasília, Campus Darcy Ribeiro - Asa Norte, Instituto de Química, Laboratório de Catálise (A1-62/21), Brasília-DF, 70910-900, Brazil
| | - Juliene O C Freitas
- Universidade de Brasília, Campus Darcy Ribeiro - Asa Norte, Instituto de Química, Laboratório de Catálise (A1-62/21), Brasília-DF, 70910-900, Brazil
| | - Maria José A Sales
- Universidade de Brasília, Campus Darcy Ribeiro - Asa Norte, Instituto de Química, Laboratório de Catálise (A1-62/21), Brasília-DF, 70910-900, Brazil
| | - Sílvia C L Dias
- Universidade de Brasília, Campus Darcy Ribeiro - Asa Norte, Instituto de Química, Laboratório de Catálise (A1-62/21), Brasília-DF, 70910-900, Brazil
| | - José A Dias
- Universidade de Brasília, Campus Darcy Ribeiro - Asa Norte, Instituto de Química, Laboratório de Catálise (A1-62/21), Brasília-DF, 70910-900, Brazil
| |
Collapse
|
11
|
Preparation, characterization, and reaction kinetics of poly (lactic acid)/amidated graphene oxide nanocomposites based on reactive extrusion process. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1722-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Yuan SF, Hsu TC, Wang CA, Jang MF, Kuo YC, Alper HS, Guo GL, Hwang WS. Production of optically pure L(+)-lactic acid from waste plywood chips using an isolated thermotolerant Enterococcus faecalis SI at a pilot scale. J Ind Microbiol Biotechnol 2018; 45:961-970. [PMID: 30182264 DOI: 10.1007/s10295-018-2078-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Abstract
Utilization of renewable and low-cost lignocellulosic wastes has received major focus in industrial lactic acid production. The use of high solid loadings in biomass pretreatment potentially offers advantages over low solid loadings including higher lactic acid concentration with decreased production and capital costs. In this study, an isolated Enterococcus faecalis SI with optimal temperature 42 °C was used to produce optically pure L-lactic acid (> 99%) from enzyme-saccharified hydrolysates of acid-impregnated steam explosion (AISE)-treated plywood chips. The L-lactic acid production increased by 10% at 5 L scale compared to the similar fermentation scheme reported by Wee et al. The fermentation with a high solid loading of 20% and 35% (w/v) AISE-pretreated plywood chips had been successfully scaled up to process development unit scale (100 L) and pilot scale (9 m3), respectively. This is the first report of pilot-scale lignocellulosic lactic acid fermentation by E. faecalis with high lactic acid titer (nearly 92 g L-1) and yield (0.97 kg kg-1). Therefore, large-scale L-lactic acid production by E. faecalis SI shows the potential application for industries.
Collapse
Affiliation(s)
- Shuo-Fu Yuan
- Chemistry Division, Institute of Nuclear Energy Research, Atomic Energy Committee, Executive Yuan, No. 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyüan, 32546, Taiwan, ROC.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Teng-Chieh Hsu
- Chemistry Division, Institute of Nuclear Energy Research, Atomic Energy Committee, Executive Yuan, No. 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyüan, 32546, Taiwan, ROC
| | - Chun-An Wang
- Chemistry Division, Institute of Nuclear Energy Research, Atomic Energy Committee, Executive Yuan, No. 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyüan, 32546, Taiwan, ROC
| | - Ming-Feng Jang
- Chemistry Division, Institute of Nuclear Energy Research, Atomic Energy Committee, Executive Yuan, No. 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyüan, 32546, Taiwan, ROC
| | - Yang-Cheng Kuo
- Chemistry Division, Institute of Nuclear Energy Research, Atomic Energy Committee, Executive Yuan, No. 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyüan, 32546, Taiwan, ROC
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA. .,McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA.
| | - Gia-Luen Guo
- Chemistry Division, Institute of Nuclear Energy Research, Atomic Energy Committee, Executive Yuan, No. 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyüan, 32546, Taiwan, ROC.
| | - Wen-Song Hwang
- Chemistry Division, Institute of Nuclear Energy Research, Atomic Energy Committee, Executive Yuan, No. 1000 Wenhua Rd. Jiaan Village, Longtan District, Taoyüan, 32546, Taiwan, ROC
| |
Collapse
|