1
|
Luo F, Luo X, Wang L, Qu Y, Yin XB. The Design and Applications of 1,8-naphthalimide-poly(amidoamine) Dendritic
Platforms. CURR ORG CHEM 2023; 27:1164-1178. [DOI: 10.2174/1385272827666230911115827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 01/06/2025]
Abstract
Abstract:
Poly(amidoamine) (PAMAM) is easily prepared with ethylenediamine as the
precursor to form a dendritic structure with a size of 1.4 -11.4 nm from generation 1 to
10. The terminal amino groups of PAMAM could be grafted active species, such as
1,8-naphthalimide (NI) or its derivatives, to integrate their photophysical properties
into PAMAM as NI-PAMAM. With/without metals, the new dendritic platforms can be
found for different applications, including but not limited to sensing, imaging, antibacterial,
anticancer, and liquid crystal and battery matrix. By controlling the different
generations of dendrimers, the precise size less than 10 nm can be realized. In this review,
we a) provide an overview of the 1,8-naphthalimide-poly(amidoamine) dendritic platforms and b) prospect
that functionalized dendrimers (high algebra) could act as “nanoparticles” with the precise size to bridge the gap
between functional molecules and real nanoparticles.
Collapse
Affiliation(s)
- Fangfang Luo
- College of Chemistry and Chemical Engineering, School of Chemical Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China
| | - Xin Luo
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering,
Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, School of Chemical Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China
| | - Yi Qu
- College of Chemistry and Chemical Engineering, School of Chemical Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, School of Chemical Engineering, Shanghai University of Engineering Science,
Shanghai, 201620, China
| |
Collapse
|
2
|
Jeevanandam J, Pan S, Danquah MK, Rodrigues J. Dendrimers and dendrimersomes as a novel tool for effective drug delivery applications. SYSTEMS OF NANOVESICULAR DRUG DELIVERY 2022:311-322. [DOI: 10.1016/b978-0-323-91864-0.00016-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Maciel D, Nunes N, Santos F, Fan Y, Li G, Shen M, Tomás H, Shi X, Rodrigues J. New insights into ruthenium( ii) metallodendrimers as anticancer drug nanocarriers: from synthesis to preclinic behaviour. J Mater Chem B 2022; 10:8945-8959. [PMID: 36278302 DOI: 10.1039/d2tb01280d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pre-clinical results highlight the potential of the low-generation poly(alkylidenamine)-based dendrimers as ruthenium metallodrug nanocarriers.
Collapse
Affiliation(s)
- Dina Maciel
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Nádia Nunes
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Francisco Santos
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Helena Tomás
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Xiangyang Shi
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - João Rodrigues
- CQM – Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
4
|
Nguyen TT, Nguyen BP, Nguyen DTD, Nguyen NH, Nguyen DH, Nguyen CK. Retrovirus Drugs-Loaded PEGylated PAMAM for Prolonging Drug Release and Enhancing Efficiency in HIV Treatment. Polymers (Basel) 2021; 14:114. [PMID: 35012136 PMCID: PMC8747428 DOI: 10.3390/polym14010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Polyamidoamine dendrimer (PAMAM) with its unique characteristics emerges as a potential drug delivery system which can prolong releasing time, reduce the side effects but still retaining treatment efficiency. In this study, methoxy polyethylene glycol modified PAMAM generation 3.0 (G3.0@mPEG) is prepared and characterized via 1H-NMR, FT-IR, and TEM. Subsequently, two antiretroviral agents (ARV) including lamivudine (3TC) and zidovudine (AZT) are individually encapsulated into G3.0@mPEG. The drug-loading efficiency, drug release profile, cytotoxicity and anti-HIV activity are then evaluated. The results illustrate that G3.0@mPEG particles are spherical with a size of 34.5 ± 0.2 nm and a drug loading content of about 9%. Both G3.0@mPEG and ARV@G3.0@mPEG show no cytotoxicity on BJ cells, and G3.0@mPEG loading 3TC and AZT performs sustained drug release behavior which is best fitted with the Korsmeyer-Peppas model. Finally, the anti-HIV activity of ARV via Enzymatic Assay of Pepsin is retained after being loaded into the G3.0@mPEG, in which about 36% of pepsin activity was inhibited by AZT at the concentration of 0.226 mM. Overall, PAMAM G3.0@mPEG is a promising nanocarrier system for loading ARV in HIV treatment and prevention.
Collapse
Affiliation(s)
- Thi Thinh Nguyen
- Institute of Drug Quality Control, Ho Chi Minh City 70000, Vietnam;
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
| | - Bao Phu Nguyen
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology, Ho Chi Minh City 70000, Vietnam;
| | - Dinh Tien Dung Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Vietnam;
- Faculty of Natural Science, Duy Tan University, Danang City 550000, Vietnam
| | - Ngoc Hoi Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Dai Hai Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Cuu Khoa Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam; (N.H.N.); (D.H.N.)
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
5
|
Cotton Fabric Modified with a PAMAM Dendrimer with Encapsulated Copper Nanoparticles: Antimicrobial Activity. MATERIALS 2021; 14:ma14247832. [PMID: 34947424 PMCID: PMC8705771 DOI: 10.3390/ma14247832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
A new methodology for modifying textile materials with dendrimers containing nanoparticles was developed. This involved a combination of eosin Y and N-methyldiethanolamine (MDEA) for reducing the copper ions in the dendrimer complex by enabling a photochemical reaction under visible light and ambient conditions. The conversion of copper ions into nanoparticles was monitored using scanning electron microscopy (SEM) and by performing colorimetric, fluorescence, and electron paramagnetic resonance (EPR) studies. Regardless of the concentration of the photoinitiator eosin Y, it discolored completely upon illumination. Three types of cotton fabrics were compared as antimicrobial materials against Bacillus cereus. One of the fabrics was dyed with a first-generation PAMAM dendrimer which had been functionalized with eight 1,8-naphthalimide fluorophores. Another fabric was dyed with a dendrimer-copper complex, and the third was treated by conversion of the complex into copper nanoparticles encapsulated into the dendrimer. An enhancement in the antimicrobial activity of the textiles was achieved at higher dendrimer concentrations, under illumination with visible light. The fabric modified with the copper nanoparticles encapsulated inside the dendrimer exhibited the best antibacterial activity because it had two photosensitizers (PS), as both 1,8-naphthalimide fluorophores and copper nanoparticles were contained in the dendrimer molecules. The presence of oxygen and suitable illumination activated the photosensitizers to generate the reactive oxygen species (singlet oxygen (1O2) and other oxygenated products, e.g., anion radicals, hydroxyl radicals, and hydrogen peroxide) responsible for destroying the bacteria.
Collapse
|
6
|
Canonico B, Cangiotti M, Montanari M, Papa S, Fusi V, Giorgi L, Ciacci C, Ottaviani MF, Staneva D, Grabchev I. Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells. Biol Chem 2021; 403:345-360. [PMID: 34883001 DOI: 10.1515/hsz-2021-0388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023]
Abstract
The activity and interacting ability of a polyamidoamine (PAMAM) dendrimer modified with 4-N-methylpiperazine-1,8-naphthalimide units (termed D) and complexed by Cu(ii) ions, towards healthy and cancer cells were studied. Comparative electron paramagnetic resonance (EPR) studies of the Cu(ii)-D complex are presented: coordination mode, chemical structure, flexibility and stability of these complexes, in the absence and presence of myeloid cancer cells and peripheral blood mononuclear cells (PBMC). The interactions of Cu(ii) ions in the biological media at different equilibrium times were studied, highlighting different stability and interacting conditions with the cells. Furthermore, flow cytometry and confocal analysis, trace the peculiar properties of the dendrimers in PBMC and U937 cells. Indeed, a new probe (Fly) was used as a potential fluorescent tool for biological imaging of Cu(ii). The study highlights that dendrimer and, mainly, the Cu(ii) metallodendrimer are cytotoxic agents for the cells, specifically for U937 tumor cells, inducing mitochondrial dysfunction, ROS increase and lysosome involvement. The metallodendrimer shows antitumor selectivity, fewer affecting healthy PBMC, inducing a massive apoptotic cell death on U937 cells, in line with the high stability of this complex, as verified by EPR studies. The results underline the potentiality of this metallodendrimer to be used as anticancer drug.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Michela Cangiotti
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | | | - Desislava Staneva
- University of Chemical Technology and Metallurgy, BG-1756 Sofia, Bulgaria
| | - Ivo Grabchev
- Sofia University "St. Kliment Ohridski", Faculty of Medicine, BG-1407 Sofia, Bulgaria
| |
Collapse
|
7
|
Synthesis and characterization of fluorescent PAMAM dendrimer modified with 1,8-naphthalimide units and its Cu(II) complex designed for specific biomedical application. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Synthesis, photophysical characterisation and antimicrobial activity of a new anionic PAMAM dendrimer. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Bosch P, Staneva D, Vasileva-Tonkova E, Grozdanov P, Nikolova I, Kukeva R, Stoyanova R, Grabchev I. Hyperbranched Polymers Modified with Dansyl Units and Their Cu(II) Complexes. Bioactivity Studies. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13204574. [PMID: 33066584 PMCID: PMC7602284 DOI: 10.3390/ma13204574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 05/15/2023]
Abstract
Two new copper complexes of hyperbranched polymers modified with dansyl units were synthesized and characterized by infrared spectroscopy (IR) and electron paramagnetic resonance (EPR) techniques. It was found that copper ions coordinate predominantly with nitrogen or oxygen atoms of the polymer molecule. The place of the formation of complexes and the number of copper ions involved depend on the chemical structure of the polymer. The antimicrobial activity of the new polymers and their Cu(II) complexes was tested against Gram-negative and Gram-positive bacterial and fungal strains. Copper complexes were found to have activity better than that of the corresponding ligands. The deposition of the modified branched polymers onto cotton fabrics prevents the formation of bacterial biofilms, which indicates that the studied polymers can find application in antibacterial textiles.
Collapse
Affiliation(s)
- Paula Bosch
- Institute of Science and Technology of Polymers, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Desislava Staneva
- Department of textile and leather, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Evgenia Vasileva-Tonkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.V.-T.); (P.G.); (I.N.)
| | - Petar Grozdanov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.V.-T.); (P.G.); (I.N.)
| | - Ivanka Nikolova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.V.-T.); (P.G.); (I.N.)
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.K.); (R.S.)
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (R.K.); (R.S.)
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
10
|
Staneva D, Manov H, Yordanova S, Vasileva‐Tonkova E, Stoyanov S, Grabchev I. Synthesis, spectral properties and antimicrobial activity of a new cationic water‐soluble pH‐dependent poly(propylene imine) dendrimer modified with 1,8‐naphthalimides. LUMINESCENCE 2020; 35:947-954. [DOI: 10.1002/bio.3809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 04/01/2020] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hristo Manov
- Faculty of Chemistry and PharmacySofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| | - Stanislava Yordanova
- Faculty of Chemistry and PharmacySofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| | | | - Stanimir Stoyanov
- Faculty of Chemistry and PharmacySofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| | - Ivo Grabchev
- Faculty of MedicineSofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| |
Collapse
|
11
|
Staneva D, Vasileva-Tonkova E, Yordanova S, Kukeva R, Stoyanova R, Grabchev I. Spectral characterization, antimicrobial and antibiofilm activity of poly(propylene imine) metallodendrimers in solution and applied onto cotton fabric. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1796105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Evgenia Vasileva-Tonkova
- Department of Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stanislava Yordanova
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
12
|
Synthesis of a new fluorescent poly(propylene imine) dendrimer modified with 4-nitrobenzofurazan. Sensor and antimicrobial activity. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Sanz del Olmo N, Carloni R, Ortega P, García-Gallego S, de la Mata FJ. Metallodendrimers as a promising tool in the biomedical field: An overview. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
New Poly(Propylene Imine) Dendrimer Modified with Acridine and Its Cu(II) Complex: Synthesis, Characterization and Antimicrobial Activity. MATERIALS 2019; 12:ma12183020. [PMID: 31540365 PMCID: PMC6766332 DOI: 10.3390/ma12183020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/02/2023]
Abstract
A second-generation poly(propylene imine) dendrimer modified with acridine and its Cu(II) complex have been synthesized for the first time. It has been found that two copper ions form complexes with the nitrogen atoms of the dendrimeric core by coordinate bonds. The new compounds have been characterized by nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), fourier-transform infrared spectroscopy (FTIR) and fluorescence spectroscopy. The spectral characteristics of the modified dendrimer have been measured in different organic solvents, and a negative fluorescence solvatochromism has been observed. The antimicrobial activity of the dendrimers has been tested against model pathogenic microorganisms in agar and by broth dilution method. The cotton fabric treated with both dendrimers has been evaluated towards pathogenic microorganisms. The obtained modified cotton fabrics have been shown to hamper bacterial growth and to prevent biofilm formation. Dendrimer cytotoxicity has been investigated in vitro in the model HEp-2 cell line.
Collapse
|
15
|
Staneva D, Vasileva-Tonkova E, Grabchev I. Chemical modification of cotton fabric with 1,8-naphthalimide for use as heterogeneous sensor and antibacterial textile. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Preparation and characterization of oxaliplatin drug delivery vehicle based on PEGylated half-generation PAMAM dendrimer. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1779-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Surface Functionalization of Cotton Fabric with Fluorescent Dendrimers, Spectral Characterization, Cytotoxicity, Antimicrobial and Antitumor Activity. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7020017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(propylenimine) dendrimers from first and third generations modified with 1,8-naphthalimide units and their Zn(II) complexes have been investigated by absorption and fluorescence spectroscopy. These dendrimers have been deposited on a cotton cloth by the extraction method, producing yellow-colored textile materials. They have been characterized by defining their color coordinates L*a*b*, XYZ and xy. The antimicrobial activity of dendrimers has been investigated in vitro against model gram-positive and gram-negative bacteria and yeasts. Being deposited onto the surface of cotton fabric, the studied dendrimers reduced bacterial growth and prevented the formation of bacterial biofilm. Anticancer and cytotoxicity activities have also been performed against HeLa and Lep-3 human tumor cell lines as model systems.
Collapse
|
18
|
Grabchev I, Vasileva-Tonkova E, Staneva D, Bosch P, Kukeva R, Stoyanova R. Impact of Cu(ii) and Zn(ii) ions on the functional properties of new PAMAM metallodendrimers. NEW J CHEM 2018. [DOI: 10.1039/c8nj00384j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new PAMAM metallodendrimers have been synthesized and characterized and their antimicrobial activity in solution and after deposition on textile fabrics has been described.
Collapse
Affiliation(s)
- Ivo Grabchev
- Sofia University “St. Kliment Ohridski”
- Faculty of Medicine
- 1407 Sofia
- Bulgaria
| | | | | | - Paula Bosch
- Institute of Science and Technology of Polymers
- CSIC
- Madrid
- Spain
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| |
Collapse
|