Wu CS, Wu DY, Wang SS. Bio-based polymer nanofiber with siliceous sponge spicules prepared by electrospinning: Preparation, characterisation, and functionalisation.
MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019;
108:110506. [PMID:
31923929 DOI:
10.1016/j.msec.2019.110506]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 01/29/2023]
Abstract
Sponges, which are parasitic on plants widely found in lakes and oceans, represent a vast resource that has yet to be effectively utilised. Sponge spicules (SS), which contain high amounts of silica dioxide, form after long-term biomineralisation. In this study, SS attached to plant bodies were subjected to acid and heat treatments, followed by grinding, to obtain 10-40-nm siliceous sponge spicules (SSS). SSS and polylactic acid (PLA) were then combined to create 50-450-nm PLA/SSS composite nanofibers. The morphology and bioactivity of the electrospun PLA/SSS nanofibers were examined; the tensile, thermal, and water-resistant properties of the fibers were also evaluated. Our results showed a dramatic enhancement in the thermal and tensile properties of PLA with increasing SSS content; specifically, a 3 wt% increase in SSS content resulted in a 47 °C increase in the initial decomposition temperature and a 73.3-MPa increase in Young's modulus. The water resistance of PLA/SSS increased with SSS content, as indicated by the increase in the water contact angle compared with PLA nanofibers. PLA/SSS nanofibers also exhibited slightly enhanced human foreskin fibroblast cell proliferation, good cytocompatibility, and an antibacterial effect. The enhanced antibacterial and biodegradable properties of PLA/SSS are expected to be useful in biomedical material applications.
Collapse