1
|
Shiohara A, Prieto-Simon B, Voelcker NH. Porous polymeric membranes: fabrication techniques and biomedical applications. J Mater Chem B 2021; 9:2129-2154. [PMID: 33283821 DOI: 10.1039/d0tb01727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porous polymeric membranes have shown great potential in biological and biomedical applications such as tissue engineering, bioseparation, and biosensing, due to their structural flexibility, versatile surface chemistry, and biocompatibility. This review outlines the advantages and limitations of the fabrication techniques commonly used to produce porous polymeric membranes, with especial focus on those featuring nano/submicron scale pores, which include track etching, nanoimprinting, block-copolymer self-assembly, and electrospinning. Recent advances in membrane technology have been key to facilitate precise control of pore size, shape, density and surface properties. The review provides a critical overview of the main biological and biomedical applications of these porous polymeric membranes, especially focusing on drug delivery, tissue engineering, biosensing, and bioseparation. The effect of the membrane material and pore morphology on the role of the membranes for each specific application as well as the specific fabrication challenges, and future prospects of these membranes are thoroughly discussed.
Collapse
Affiliation(s)
- Amane Shiohara
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Beatriz Prieto-Simon
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain and ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Nicolas H Voelcker
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| |
Collapse
|
2
|
High-Molecular-Weight PLA- b-PEO- b-PLA Triblock Copolymer Templated Large Mesoporous Carbons for Supercapacitors and CO 2 Capture. Polymers (Basel) 2020; 12:polym12051193. [PMID: 32456231 PMCID: PMC7284743 DOI: 10.3390/polym12051193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 11/23/2022] Open
Abstract
High-molecular-weight PLA440-b-PEO454-b-PLA440 (LEL) triblock copolymer was synthesized through simple ring-opening polymerization (ROP) by using the commercial homopolymer HO-PEO454-OH as the macro-initiator. The material acted as a single template to prepare the large mesoporous carbons by using resol-type phenolic resin as a carbon source. Self-assembled structures of phenolic/LEL blends mediated by hydrogen bonding interaction were determined by FTIR and SAXS analyses. Through thermal curing and carbonization procedures, large mesoporous carbons (>50 nm) with a cylindrical structure and high surface area (>600 m2/g) were obtained because the OH units of phenolics prefer to interact with PEO block rather than PLA block, as determined by FTIR spectroscopy. Furthermore, higher CO2 capture and good energy storage performance were observed for this large mesoporous carbon, confirming that the proposed approach provides an easy method for the preparation of large mesoporous materials.
Collapse
|
3
|
Hung WS, Ahmed MMM, Mohamed MG, Kuo SW. Competing hydrogen bonding produces mesoporous/macroporous carbons templated by a high-molecular-weight poly(caprolactone–b–ethylene oxide–b–caprolactone) triblock copolymer. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02154-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
4
|
Zhang W, Zhang T, Jiang N, Zhang T. Chemical modification of neoprene rubber by grafting cardanol, a versatile renewable materials from cashew industry. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02122-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Ultra-low misorientation angle in small-molecule semiconductor/polyethylene oxide blends for organic thin film transistors. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02047-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|